Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices

被引:15
作者
Fang, WF [1 ]
Ito, K
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
D O I
10.1142/S0218202501001124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a mathematical model for semiconductors derived from the hydrodynamic model under the massless assumption. This model augments the classical drift-diffusion model by including temperature as a dependent variable. We establish the existence of stationary solutions near the equilibrium state.
引用
收藏
页码:827 / 840
页数:14
相关论文
共 16 条
[1]   An energy-transport model for semiconductors derived from the Boltzmann equation [J].
BenAbdallah, N ;
Degond, P ;
Genieys, S .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) :205-231
[2]   MODELING AND ANALYSIS OF LASER-BEAM INDUCED CURRENT IMAGES IN SEMICONDUCTORS [J].
BUSENBERG, S ;
FANG, WF ;
ITO, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (01) :187-204
[3]  
Dolbeault J., 1991, Mathematical Models & Methods in Applied Sciences, V1, P183, DOI 10.1142/S0218202591000113
[4]  
FANG W, 1999, ELECT J DIFFERENTIAL, V15, P1
[5]   Global solutions of the time-dependent drift-diffusion semiconductor equations [J].
Fang, WF ;
Ito, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) :523-566
[6]   ON THE TIME-DEPENDENT DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS [J].
FANG, WF ;
ITOI, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (02) :245-280
[7]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[8]   CONSISTENCY OF SEMICONDUCTOR MODELING - AN EXISTENCE-STABILITY ANALYSIS FOR THE STATIONARY VANROOSBROECK SYSTEM [J].
JEROME, JW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (04) :565-590
[9]  
JEROME JW, 1994, SEMICONDUCTORS+, V2, P185