Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease

被引:62
作者
Otaki, Yuka [1 ,2 ]
Singh, Ananya [1 ,2 ]
Kavanagh, Paul [1 ,2 ]
Miller, Robert J. H. [1 ,2 ,3 ]
Parekh, Tejas [1 ,2 ]
Tamarappoo, Balaji K. [1 ,2 ]
Sharir, Tali [4 ,5 ]
Einstein, Andrew J. [6 ,7 ,8 ]
Fish, Mathews B. [9 ]
Ruddy, Terrence D. [10 ]
Kaufmann, Philipp A. [11 ]
Sinusas, Albert J. [12 ]
Miller, Edward J. [12 ]
Bateman, Timothy M. [13 ]
Dorbala, Sharmila [14 ]
Di Carli, Marcelo [14 ]
Cadet, Sebastien [1 ,2 ]
Liang, Joanna X. [1 ,2 ]
Dey, Damini [1 ,2 ]
Berman, Daniel S. [1 ,2 ]
Slomka, Piotr J. [1 ,2 ]
机构
[1] Cedars Sinai Med Ctr, Dept Imaging, Div Nucl Med, Med,Div Artificial Intelligence Med, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Biomed Sci, Los Angeles, CA 90048 USA
[3] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
[4] Assuta Med Ctr, Dept Nucl Cardiol, Tel Aviv, Israel
[5] Ben Gurion Univ Negev, Beer Sheva, Israel
[6] Columbia Univ, Irving Med Ctr, Div Cardiol, Dept Med, New York, NY USA
[7] Columbia Univ, Irving Med Ctr, Div Cardiol, Dept Radiol, New York, NY USA
[8] New York Presbyterian Hosp, New York, NY USA
[9] Sacred Heart Med Ctr, Oregon Heart & Vasc Inst, Springfield, OR USA
[10] Univ Ottawa, Div Cardiol, Heart Inst, Ottawa, ON, Canada
[11] Univ Hosp Zurich, Dept Nucl Med, Cardiac Imaging, Zurich, Switzerland
[12] Yale Univ, Dept Internal Med, Sect Cardiovasc Med, Sch Med, New Haven, CT USA
[13] Cardiovasc Imaging Technol LLC, Kansas City, MO USA
[14] Brigham & Womens Hosp, Dept Radiol, Div Nucl Med & Mol Imaging, Boston, MA USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; deep learning; diagnostic accuracy; SPECT; MYOCARDIAL-PERFUSION SPECT; HYPERTROPHIC CARDIOMYOPATHY; VALIDATION;
D O I
10.1016/j.jcmg.2021.04.030
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Explainable artificial intelligence (AI) can be integrated within standard clinical software to facilitate the acceptance of the diagnostic findings during clinical interpretation. OBJECTIVES: This study sought to develop and evaluate a novel, general purpose, explainable deep learning model (coronary artery disease-deep learning [CAD-DL]) for the detection of obstructive CAD following single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: A total of 3,578 patients with suspected CAD undergoing SPECT MPI and invasive coronary angiography within a 6-month interval from 9 centers were studied. CAD-DL computes the probability of obstructive CAD from stress myocardial perfusion, wall motion, and wall thickening maps, as well as left ventricular volumes, age, and sex. Myocardial regions contributing to the CAD-DL prediction are highlighted to explain the findings to the physician. A clinical prototype was integrated using a standard clinical workstation. Diagnostic performance by CAD-DL was compared to automated quantitative total perfusion deficit (TPD) and reader diagnosis. RESULTS: In total, 2,247 patients (63%) had obstructive CAD. In 10-fold repeated testing, the area under the receiver-operating characteristic curve (AUC) (95% CI) was higher according to CAD-DL (AUC: 0.83 [95% CI: 0.82-0.85]) than stress TPD (AUC: 0.78 [95% CI: 0.77-0.80]) or reader diagnosis (AUC: 0.71 [95% CI: 0.69-0.72]; P < 0.0001 for both). In external testing, the AUC in 555 patients was higher according to CAD-DL (AUC: 0.80 [95% CI: 0.76-0.84]) than stress TPD (AUC: 0.73 [95% CI: 0.69-0.77]) or reader diagnosis (AUC: 0.65 [95% CI: 0.61-0.69]; P < 0.001 for all). The present model can be integrated within standard clinical software and generates results rapidly (<12 seconds on a standard clinical workstation) and therefore could readily be incorporated into a typical clinical workflow. CONCLUSIONS: The deep-learning model significantly surpasses the diagnostic accuracy of standard quantitative analysis and clinical visual reading for MPI. Explainable artificial intelligence can be integrated within standard clinical software to facilitate acceptance of artificial intelligence diagnosis of CAD following MPI. (C) 2022 by the American College of Cardiology Foundation.
引用
收藏
页码:1091 / 1102
页数:12
相关论文
共 34 条
[1]  
[Anonymous], NUCL MED MARKET OUTL
[2]   Comparison of Fully Automated Computer Analysis and Visual Scoring for Detection of Coronary Artery Disease from Myocardial Perfusion SPECT in a Large Population [J].
Arsanjani, Reza ;
Xu, Yuan ;
Hayes, Sean W. ;
Fish, Mathews ;
Lemley, Mark, Jr. ;
Gerlach, James ;
Dorbala, Sharmila ;
Berman, Daniel S. ;
Germano, Guido ;
Slomka, Piotr .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (02) :221-228
[3]   Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study [J].
Betancur, Julian ;
Hu, Lien-Hsin ;
Commandeur, Frederic ;
Sharir, Tali ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Germano, Guido ;
Otaki, Yuka ;
Liang, Joanna X. ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (05) :664-670
[4]   Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning [J].
Betancur, Julian ;
Otaki, Yuka ;
Motwani, Manish ;
Fish, Mathews B. ;
Lemley, Mark ;
Dey, Damini ;
Gransar, Heidi ;
Tamarappoo, Balaji ;
Germano, Guido ;
Sharir, Tali ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (07) :1000-1009
[5]   Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT A Multicenter Study [J].
Betancur, Julian ;
Commandeur, Frederic ;
Motlagh, Mahsaw ;
Sharir, Tali ;
Einstein, Andrew J. ;
Bokhari, Sabahat ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Germano, Guido ;
Otaki, Yuka ;
Tamarappoo, Balaji K. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
JACC-CARDIOVASCULAR IMAGING, 2018, 11 (11) :1654-1663
[6]   Automatic Valve Plane Localization in Myocardial Perfusion SPECT/CT by Machine Learning: Anatomic and Clinical Validation [J].
Betancur, Julian ;
Rubeaux, Mathieu ;
Fuchs, Tobias A. ;
Otaki, Yuka ;
Arnson, Yoav ;
Slipczuk, Leandro ;
Benz, Dominik C. ;
Germano, Guido ;
Dey, Damini ;
Lin, Chih-Jen ;
Berman, Daniel S. ;
Kaufmann, Philipp A. ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (06) :961-967
[7]   External validation is necessary in, prediction research: A clinical example [J].
Bleeker, SE ;
Moll, HA ;
Steyerberg, EW ;
Donders, ART ;
Derksen-Lubsen, G ;
Grobbee, DE ;
Moons, KGM .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (09) :826-832
[8]  
Cerqueira MD, 2002, INT J CARDIOVAS IMAG, V18, P539
[9]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[10]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335