Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp cultures

被引:193
作者
Chiu, Sheng-Yi [1 ]
Kao, Chien-Ya [1 ]
Huang, Tzu-Ting [1 ]
Lin, Chia-Jung [1 ]
Ong, Seow-Chin [1 ]
Chen, Chun-Da [2 ]
Chang, Jo-Shu [3 ]
Lin, Chih-Sheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu 300, Taiwan
[2] China Steel Corp, New Mat Res & Dev Dept, Energy & Air Pollut Control Sect, Kaohsiung, Taiwan
[3] Natl Cheng Kung Univ, Dept Chem Engn, Tainan, Taiwan
关键词
Flue gas; Carbon dioxide; Microalga; Photobioreactor; Chlorella sp; CO2; REDUCTION; REMOVAL; GROWTH;
D O I
10.1016/j.biortech.2011.06.091
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The growth and on-site bioremediation potential of an isolated thermal- and CO2-tolerant mutant strain. Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue. gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days was 2.87 g L-1 (with an initial culture biomass concentration of 0.75 g L-1), 0.52 g L-1 d(-1) and 25.2%, respectively. By the operation with intermittent flue gas aeration in a double-set photobioreactor system, average efficiency of CO2 removal from the flue gas could reach to 60%, and NO and SO2 removal efficiency was maintained at approximately 70% and 50%, respectively. Our results demonstrate that flue gas from coke oven could be directly introduced into Chlorella sp. MTF-7 cultures to potentially produce algal biomass and efficiently capture CO2, NO and SO2 from flue gas. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9135 / 9142
页数:8
相关论文
共 35 条
[1]   Mechanistic Modeling of Broth Temperature in Outdoor Photobioreactors [J].
Bechet, Quentin ;
Shilton, Andy ;
Fringer, Oliver B. ;
Munoz, Raul ;
Guieysse, Benoit .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (06) :2197-2203
[2]   Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products [J].
Brennan, Liam ;
Owende, Philip .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :557-577
[3]   Microalgal Biomass for Greenhouse Gas Reductions: Potential for Replacement of Fossil Fuels and Animal Feeds [J].
Brune, D. E. ;
Lundquist, T. J. ;
Benemann, J. R. .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2009, 135 (11) :1136-1144
[4]   Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review [J].
Chen, Chun-Yen ;
Yeh, Kuei-Ling ;
Aisyah, Rifka ;
Lee, Duu-Jong ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :71-81
[5]   Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor [J].
Chiu, Sheng-Yi ;
Kao, Chien-Ya ;
Chen, Chiun-Hsun ;
Kuan, Tang-Ching ;
Ong, Seow-Chin ;
Lin, Chih-Sheng .
BIORESOURCE TECHNOLOGY, 2008, 99 (09) :3389-3396
[6]   The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal [J].
Chiu, Sheng-Yi ;
Tsai, Ming-Ta ;
Kao, Chien-Ya ;
Ong, Seow-Chin ;
Lin, Chih-Sheng .
ENGINEERING IN LIFE SCIENCES, 2009, 9 (03) :254-260
[7]   Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration [J].
Chiu, Sheng-Yi ;
Kao, Chien-Ya ;
Tsai, Ming-Ta ;
Ong, Seow-Chin ;
Chen, Chiun-Hsun ;
Lin, Chih-Sheng .
BIORESOURCE TECHNOLOGY, 2009, 100 (02) :833-838
[8]   Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor [J].
Doucha, J ;
Straka, F ;
Lívansky, K .
JOURNAL OF APPLIED PHYCOLOGY, 2005, 17 (05) :403-412
[9]   Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs [J].
Douskova, I. ;
Doucha, J. ;
Livansky, K. ;
Machat, J. ;
Novak, P. ;
Umysova, D. ;
Zachleder, V. ;
Vitova, M. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (01) :179-185
[10]   Biogas, membranes and carbon dioxide capture [J].
Favre, Eric ;
Bounaceur, Roda ;
Roizard, Denis .
JOURNAL OF MEMBRANE SCIENCE, 2009, 328 (1-2) :11-14