Commuting H-Toeplitz operators with quasihomogeneous symbols

被引:5
作者
Liang, Jinjin [1 ]
Lai, Liling [1 ]
Zhao, Yile [2 ]
Chen, Yong [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
H-Toeplitz operator; Bergman space; commutativity; quasihomogeneous function; ALGEBRAIC PROPERTIES; HANKEL-OPERATORS; BERGMAN;
D O I
10.3934/math.2022442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we characterize the commutativity of H-Toeplitz operators with quasihomogeneous symbols on the Bergman space, which is different from the case of Toeplitz operators with same symbols on the Bergman space.
引用
收藏
页码:7898 / 7908
页数:11
相关论文
共 15 条
[1]  
Arora S. C., 2007, Bull. Pure Appl. Math., V1, P141
[2]   Commutants of analytic Toeplitz operators on the Bergman space [J].
Axler, S ;
Cuckovic, Z ;
Rao, NV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :1951-1953
[3]   COMMUTING TOEPLITZ-OPERATORS WITH HARMONIC SYMBOLS [J].
AXLER, S ;
CUCKOVIC, Z .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (01) :1-12
[4]  
Brown A., 1963, J. Reine Angew. Math, V213, P89
[5]   Mellin transform, monomial symbols, and commuting Toeplitz operators [J].
Cuckovic, Z ;
Rao, NV .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :195-214
[6]  
Dong XT, 2011, J OPERAT THEOR, V66, P193
[7]   Algebraic Properties of Toeplitz and Small Hankel Operators on the Harmonic Bergman Space [J].
Guan, Hong Yan ;
Lu, Yu Feng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) :1395-1406
[8]   Essentially commuting Hankel and Toeplitz operators [J].
Guo, KY ;
Zheng, DC .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :121-147
[9]   H-TOEPLITZ OPERATORS ON THE BERGMAN SPACE [J].
Gupta, Anuradha ;
Singh, Shivam Kumar .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) :327-347
[10]   On Toeplitz operators with quasihomogeneous symbols [J].
Louhichi, I ;
Zakariasy, L .
ARCHIV DER MATHEMATIK, 2005, 85 (03) :248-257