Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity

被引:40
作者
Kim, Hyochul [1 ,2 ]
Shen, Thomas C. [1 ,2 ]
Sridharan, Deepak [1 ,2 ]
Solomon, Glenn S. [3 ]
Waks, Edo [1 ,2 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, IREAP, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[3] Univ Maryland, NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
NANOCAVITY; SPIN;
D O I
10.1063/1.3562344
中图分类号
O59 [应用物理学];
学科分类号
摘要
We apply magnetic fields of up to 7 T to an indium arsenide quantum dot (QD) strongly coupled to a photonic crystal cavity. The field lifts the degeneracy of QD exciton spin states, and tune their emission energy by a combination of diamagnetic and Zeeman energy shifts. We use magnetic field tuning to shift the energies of the two exciton spin states to be selectively on resonance with the cavity. Strong coupling between the cavity and both states is observed. Magnetic field tuning enables energy shifts as large as 0.83 meV without significant degradation of the QD-cavity coupling strength. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562344]
引用
收藏
页数:3
相关论文
共 50 条
[21]   Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system [J].
van der Sar, T. ;
Hagemeier, J. ;
Pfaff, W. ;
Heeres, E. C. ;
Thon, S. M. ;
Kim, H. ;
Petroff, P. M. ;
Oosterkamp, T. H. ;
Bouwmeester, D. ;
Hanson, R. .
APPLIED PHYSICS LETTERS, 2011, 98 (19)
[22]   Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity [J].
Midolo, L. ;
Pagliano, F. ;
Hoang, T. B. ;
Xia, T. ;
van Otten, F. W. M. ;
Li, L. H. ;
Linfield, E. H. ;
Lermer, M. ;
Hoefling, S. ;
Fiore, A. .
APPLIED PHYSICS LETTERS, 2012, 101 (09)
[23]   Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green's functions [J].
Yu, Yi-Cong ;
Liu, Jing-Feng ;
Zhuo, Xiao-Lu ;
Chen, Gengyan ;
Jin, Chong-Jun ;
Wang, Xue-Hua .
OPTICS EXPRESS, 2013, 21 (20) :23486-23497
[24]   Time-Dependent Photon Correlations for Incoherently Pumped Quantum Dot Strongly Coupled to the Cavity Mode [J].
Poshakinskiy, A. V. ;
Poddubny, A. N. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2014, 118 (02) :205-216
[25]   Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe [J].
Le Gac, G. ;
Rahmani, A. ;
Seassal, C. ;
Picard, E. ;
Hadji, E. ;
Callard, S. .
OPTICS EXPRESS, 2009, 17 (24) :21672-21679
[26]   A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity [J].
Liu, J. ;
Ates, S. ;
Lorke, M. ;
Mork, J. ;
Lodahl, P. ;
Stobbe, S. .
OPTICS EXPRESS, 2013, 21 (23) :28507-28512
[27]   Dynamic characteristics of photonic crystal quantum dot lasers [J].
Banihashemi, Mehdi ;
Ahmadi, Vahid .
APPLIED OPTICS, 2014, 53 (12) :2595-2601
[28]   Coherent Exciton Delocalization in Strongly Coupled Quantum Dot Arrays [J].
Crisp, Ryan W. ;
Schrauben, Joel N. ;
Beard, Matthew C. ;
Luther, Joseph M. ;
Johnson, Justin C. .
NANO LETTERS, 2013, 13 (10) :4862-4869
[29]   Quantum dot-photonic crystal chips for quantum information processing [J].
Faraon, Andrei ;
Englund, Dirk ;
Fushman, Ilya ;
Sih, Vanessa ;
Vuckovic, Jelena .
ADVANCED OPTICAL CONCEPTS IN QUANTUM COMPUTING, MEMORY, AND COMMUNICATION, 2008, 6903
[30]   Coherence-mediated squeezing of a cavity field coupled to a coherently driven single quantum dot [J].
Kumar, Parvendra ;
Vedeshwar, Agnikumar G. .
PHYSICAL REVIEW A, 2022, 105 (03)