The BUDS Language for Distributed Bayesian Machine Learning

被引:9
作者
Gao, Zekai J. [1 ]
Luo, Shangyu [1 ]
Pere, Luis L. [1 ]
Jermaine, Chris [1 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
来源
SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA | 2017年
基金
美国国家科学基金会;
关键词
D O I
10.1145/3035918.3035937
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe BUDS, a declarative language for succinctly and simply specifying the implementation of large-scale machine learning algorithms on a distributed computing platform. The types supported in BUDS-vectors, arrays, etc.-are simply logical abstractions useful for programming, and do not correspond to the actual implementation. In fact, BUDS automatically chooses the physical realization of these abstractions in a distributed system, by taking into account the characteristics of the data. Likewise, there are many available implementations of the abstract operations offered by BUDS (matrix multiplies, transposes, Hadamard products, etc.). These are tightly coupled with the physical representation. In BUDS, these implementations are co-optimized along with the representation. All of this allows for the BUDS compiler to automatically perform deep optimizations of the user's program, and automatically generate efficient implementations.
引用
收藏
页码:961 / 976
页数:16
相关论文
共 43 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Implicit Parallelism through Deep Language Embedding [J].
Alexandrov, Alexander ;
Kunft, Andreas ;
Katsifodimos, Asterios ;
Schueler, Felix ;
Thamsen, Lauritz ;
Kao, Odej ;
Herb, Tobias ;
Markl, Volker .
SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, :47-61
[3]   The Stratosphere platform for big data analytics [J].
Alexandrov, Alexander ;
Bergmann, Rico ;
Ewen, Stephan ;
Freytag, Johann-Christoph ;
Hueske, Fabian ;
Heise, Arvid ;
Kao, Odej ;
Leich, Marcus ;
Leser, Ulf ;
Markl, Volker ;
Naumann, Felix ;
Peters, Mathias ;
Rheinlaender, Astrid ;
Sax, Matthias J. ;
Schelter, Sebastian ;
Hoeger, Mareike ;
Tzoumas, Kostas ;
Warneke, Daniel .
VLDB JOURNAL, 2014, 23 (06) :939-964
[4]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[5]  
[Anonymous], IJCAI
[6]  
[Anonymous], P UAI
[7]  
[Anonymous], GEMM BASED LEVEL 3 B
[8]  
[Anonymous], DBPL
[9]  
[Anonymous], 2017, ICDE
[10]  
[Anonymous], 2016, ARXIV160505826