Spectral properties of non-selfadjoint difference operators

被引:57
作者
Adivar, M [1 ]
Bairamov, E [1 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
D O I
10.1006/jmaa.2001.7532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L denote the operator generated in l(2) (Z) by the difference expression (ly)(n) = a(n-1)y(n-1) + b(n)y(n) + a(n)y(n +1), n is an element of Z ={0, +/- 1, +/- 2,...},where {a(n)}(n is an element of Z) and {b(n)}(n is an element of Z) are complex sequences. In this paper we investigated the spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L. We also studied similar problems for the discrete Dirac operator M generated in l(2)(Z,C-2)by the system of difference expression (Lambday)(n) = (((Lambda 1y)n)((Lambda 2y)n)) = ((Delta yn(2) + pnyn(1))(-Delta yn-1(1) + qnyn(2))), n is an element of Z, where y = {((yn(1))(yn(2)))} (n is an element of Z) Delta is the forward difference operator, i.e., Deltay(n)((i)) = Delta ((i))(n+1) - y(n)((i)), = 1, 2, and {p(n)}(n is an element of Z), are complex sequences. (C) 2001 Academic Press.
引用
收藏
页码:461 / 478
页数:18
相关论文
共 14 条
[1]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations, DOI 10.1007/978-94-015-8899-7
[2]  
Bairamov E, 1997, INDIAN J PURE AP MAT, V28, P813
[3]   Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators [J].
Bairamov, E ;
Çelebi, AO .
QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200) :371-384
[4]   Quadratic pencil of Schrodinger operators with spectral singularities: Discrete spectrum and principal functions [J].
Bairamov, E ;
Cakar, O ;
Celebi, AO .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :303-320
[5]   An eigenfunction expansion for a quadratic pencil of a Schrodinger operator with spectral singularities [J].
Bairamov, E ;
Çakar, Ö ;
Krall, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :268-289
[6]  
BEREZANSKI Y, 1968, EXPANSION EIGENFUNCT
[7]  
DOLZHENKO EP, 1979, MATH NOTES, V26, P437
[8]  
Glazman IM., 1965, DIRECT METHODS QUALI
[9]  
Guseinov GS., 1976, Soviet Math. Dokl, V17, P1684
[10]   Spectrum and spectral singularities of a quadratic pencil of a Schrodinger operator with a general boundary condition [J].
Krall, AM ;
Bairamov, E ;
Çakar, Ö .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :252-267