Analytical Model of CVD Growth of Graphene on Cu(111) Surface

被引:4
作者
Popov, Ilya [1 ,2 ]
Bugel, Patrick [3 ]
Kozlowska, Mariana [3 ]
Fink, Karin [3 ]
Studt, Felix [1 ,4 ]
Sharapa, Dmitry, I [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol IKFT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
[3] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[4] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem ITCP, D-76131 Karlsruhe, Germany
关键词
graphene growth; nucleation kinetics; analytical model; chemical vapor deposition; lattice gas model; CHEMICAL-VAPOR-DEPOSITION; TOTAL-ENERGY CALCULATIONS; KINETICS; SIMULATIONS; NUCLEATION;
D O I
10.3390/nano12172963
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although the CVD synthesis of graphene on Cu(111) is an industrial process of outstanding importance, its theoretical description and modeling are hampered by its multiscale nature and the large number of elementary reactions involved. In this work, we propose an analytical model of graphene nucleation and growth on Cu(111) surfaces based on the combination of kinetic nucleation theory and the DFT simulations of elementary steps. In the framework of the proposed model, the mechanism of graphene nucleation is analyzed with particular emphasis on the roles played by the two main feeding species, C and C-2. Our analysis reveals unexpected patterns of graphene growth, not typical for classical nucleation theories. In addition, we show that the proposed theory allows for the reproduction of the experimentally observed characteristics of polycrystalline graphene samples in the most computationally efficient way.
引用
收藏
页数:15
相关论文
共 58 条
[11]  
Desai RC, 2009, DYNAMICS OF SELF-ORGANIZED AND SELF-ASSEMBLED STRUCTURES, P87, DOI 10.1017/CBO9780511609725.013
[13]   Theoretical Study of Chemical Vapor Deposition Synthesis of Graphene and Beyond: Challenges and Perspectives [J].
Dong, Jichen ;
Zhang, Leining ;
Wu, Bin ;
Ding, Feng ;
Liu, Yunqi .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (33) :7942-7963
[14]   Kinetics of Graphene and 2D Materials Growth [J].
Dong, Jichen ;
Zhang, Leining ;
Ding, Feng .
ADVANCED MATERIALS, 2019, 31 (09)
[15]   Multiscale simulations of the early stages of the growth of graphene on copper [J].
Gaillard, P. ;
Chanier, T. ;
Henrard, L. ;
Moskovkin, P. ;
Lucas, S. .
SURFACE SCIENCE, 2015, 637 :11-18
[16]   High-Quality Graphene Using Boudouard Reaction [J].
Grebenko, Artem K. ;
Krasnikov, Dmitry, V ;
Bubis, Anton, V ;
Stolyarov, Vasily S. ;
Vyalikh, Denis V. ;
Makarova, Anna A. ;
Fedorov, Alexander ;
Aitkulova, Aisuluu ;
Alekseeva, Alena A. ;
Gilshtein, Evgeniia ;
Bedran, Zakhar ;
Shmakov, Alexander N. ;
Alyabyeva, Liudmila ;
Mozhchil, Rais N. ;
Ionov, Andrey M. ;
Gorshunov, Boris P. ;
Laasonen, Kari ;
Podzorov, Vitaly ;
Nasibulin, Albert G. .
ADVANCED SCIENCE, 2022, 9 (12)
[17]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[18]  
Jonsson H., 1998, Classical and Quantum Dynamics in Condensed Phase Simulations, DOI DOI 10.1142/9789812839664_0016
[19]   Activation Energy Paths for Graphene Nucleation and Growth on Cu [J].
Kim, HoKwon ;
Mattevi, Cecilia ;
Calvo, M. Reyes ;
Oberg, Jenny C. ;
Artiglia, Luca ;
Agnoli, Stefano ;
Hirjibehedin, Cyrus F. ;
Chhowalla, Manish ;
Saiz, Eduardo .
ACS NANO, 2012, 6 (04) :3614-3623
[20]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186