Finite-Dimensional Bicomplex Hilbert Spaces

被引:31
作者
Lavoie, Raphael Gervais [1 ]
Marchildon, Louis [1 ]
Rochon, Dominic [2 ]
机构
[1] Univ Quebec, Dept Phys, Trois Rivieres, PQ G9A 5H7, Canada
[2] Univ Quebec, Dept Math & Informat, Trois Rivieres, PQ G9A 5H7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bicomplex numbers; bicomplex quantum mechanics; generalized quantum mechanics; Hilbert spaces; bicomplex matrix; bicomplex linear algebra; generalized linear algebra;
D O I
10.1007/s00006-010-0274-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a detailed study of finite-dimensional modules defined on bicomplex numbers. A number of results are proved on bicomplex square matrices, linear operators, orthogonal bases, self-adjoint operators and Hilbert spaces, including the spectral decomposition theorem. Applications to concepts relevant to quantum mechanics, like the evolution operator, are pointed out.
引用
收藏
页码:561 / 581
页数:21
相关论文
共 12 条
[1]  
Adler SL., 1995, QUATERNIONIC QUANTUM
[2]  
BOURBAKI N, 1962, ELEMENTS MATH, V6
[3]  
Conway J., 1990, COURSE FUNCTIONAL AN
[4]  
Hartley B., 1970, RINGS MODULES LINEAR
[5]  
Herget C.J., 1993, APPL ALGEBRA FUNCTIO
[6]  
LAVOIE RG, NUOVO CIM B IN PRESS
[7]  
Lipschutz S., 2008, Schaum's Outline of Linear Algebra
[8]  
Marchildon L., 2002, Quantum Mechanics: From Basic Principles to Numerical Methods and Applications
[9]  
Price GB., 1991, An Introduction to Multicomplex Spaces and Functions
[10]   Bicomplex quantum mechanics: II. The Hilbert space [J].
Rochon, D. ;
Tremblay, S. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (02) :135-157