Geometric phase and topological phase diagram of the one-dimensional XXZ Heisenberg spin chain in a longitudinal field

被引:0
作者
Liao, Yi [1 ,2 ]
Gong, Xiao-Bo [3 ,4 ]
Guo, Chu [5 ]
Chen, Ping-Xing [1 ,2 ]
机构
[1] Natl Univ Def Technol, Dept Phys, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Interdisciplinary Ctr Quantum Informat, Changsha 410073, Peoples R China
[3] Chinese Acad Sci, Yunnan Observ, Kunming 650011, Yunnan, Peoples R China
[4] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, Kunming 650011, Yunnan, Peoples R China
[5] SSF IEU, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
BOSE-EINSTEIN CONDENSATION; QUANTUM; MODEL; SYSTEMS; ORDER;
D O I
10.1016/j.jmmm.2020.166794
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we determine the geometric phase for the one-dimensional XXZ Heisenberg chain with spin-1/2, the exchange couple J and the spin anisotropy parameter Delta in a longitudinal field (LF) with the reduced field strength h. Using the Jordan-Wigner transformation and the mean-field theory based on the Wick's theorem, a semi-analytical theory has been developed in terms of order parameters which satisfy the self-consistent equations. The values of the order parameters are numerically computed using the matrix-product-state (MPS) method. The validity of the mean-filed theory could be checked through the comparison between the self-consistent solutions and the numerical results. Finally, we draw the topological phase diagrams in the case J < 0 and the case J > 0.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 1999, Thermodynamics of One-Dimensional Solvable Models
[2]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[4]  
Bohm A., 2003, TEXT MONOGR, DOI DOI 10.1007/978-3-662-10333-36
[5]   Geometric phases and criticality in spin-chain systems [J].
Carollo, ACM ;
Pachos, JK .
PHYSICAL REVIEW LETTERS, 2005, 95 (15)
[6]   Computation of dynamical correlation functions of Heisenberg chains: the gapless anisotropic regime [J].
Caux, JS ;
Hagemans, R ;
Maillet, JM .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :83-102
[7]   Dynamical structure factor of the anisotropic Heisenberg chain in a transverse field -: art. no. 134431 [J].
Caux, JS ;
Essler, FHL ;
Löw, U .
PHYSICAL REVIEW B, 2003, 68 (13)
[8]   Critical property of the geometric phase in the Dicke model [J].
Chen, Gang ;
Li, Juqi ;
Liang, J. -Q. .
PHYSICAL REVIEW A, 2006, 74 (05)
[9]   Scaling of geometric phase and fidelity susceptibility across the critical points and their relations [J].
Cheng, Jia-Ming ;
Gong, Ming ;
Guo, Guang-Can ;
Zhou, Zheng-Wei .
PHYSICAL REVIEW A, 2017, 95 (06)
[10]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,