Gradient Estimates for Nonlinear Reaction-Diffusion Equations on Riemannian Manifolds

被引:0
|
作者
Wang, Yu-Zhao [1 ]
Wang, Xueming [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear reaction diffusion equation; Li-Yau type gradient estimate; Hamilton type estimate; Ricci curvature; Bochner formula; ENTROPY FORMULAS;
D O I
10.1007/s00025-021-01518-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the global Li-Yau type gradient estimate and Hamilton type estimate for positive solutions to the nonlinear reaction diffusion equation u(t) = Delta(p)u(gamma) + cu(q) on compact Riemannian manifolds with nonnegative Ricci curvature. As applications, the corresponding Harnack inequalities are derived.
引用
收藏
页数:13
相关论文
共 50 条