Survival probability in Generalized Rosenzweig-Porter random matrix ensemble

被引:57
作者
De Tomasi, Giuseppe [1 ,2 ]
Amini, Mohsen [3 ]
Bera, Soumya [4 ]
Khaymovich, Ivan M. [1 ]
Kravtsov, Vladimir E. [5 ,6 ,7 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Tech Univ Munich, D-85747 Garching, Germany
[3] Univ Isfahan UI Hezar Jerib, Dept Phys, Esfahan 8174673441, Iran
[4] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[6] LD Landau Inst Theoret Phys, Chernogolovka, Russia
[7] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Kohn Hall, Santa Barbara, CA 93106 USA
来源
SCIPOST PHYSICS | 2019年 / 6卷 / 01期
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
ANDERSON-LOCALIZATION; TRANSITION; TRANSPORT; REPULSION; SYSTEM; PHASE; MODEL;
D O I
10.21468/SciPostPhys.6.1.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability R(t), the probability of finding the initial state after time t. In particular, if the system is initially prepared in a highly-excited non-stationary state (wave packet) confined in space and containing a fixed fraction of all eigenstates, we show that R(t)can be used as a dynamical indicator to distinguish these three phases. Three main aspects are identified in different phases. The ergodic phase is characterized by the standard power-law decay of R(t) with periodic oscillations in time, surviving in the thermodynamic limit, with frequency equals to the energy bandwidth of the wave packet. In multifractal extended phase the survival probability shows an exponential decay but the decay rate vanishes in the thermodynamic limit in a non-trivial manner determined by the fractal dimension of wave functions. Localized phase is characterized by the saturation value of R(t -> infinity) = k, finite in the thermodynamic limit N -> infinity, which approaches k = R (t -> 0) in this limit.
引用
收藏
页数:23
相关论文
共 54 条
  • [1] Divergence of classical trajectories and weak localization
    Aleiner, IL
    Larkin, AI
    [J]. PHYSICAL REVIEW B, 1996, 54 (20): : 14423 - 14444
  • [2] Perturbation theory for the Rosenzweig-Porter matrix model
    Altland, A
    Janssen, M
    Shapiro, B
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1231 - 1234
  • [3] Altshuler B. L., 1986, Soviet Physics - JETP, V64, P127
  • [4] Quasiparticle lifetime in a finite system: A nonperturbative approach
    Altshuler, BL
    Gefen, Y
    Kamenev, A
    Levitov, LS
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (14) : 2803 - 2806
  • [5] ALTSHULER BL, 1988, ZH EKSP TEOR FIZ+, V94, P343
  • [6] Spread of wave packets in disordered hierarchical lattices
    Amini, M.
    [J]. EPL, 2017, 117 (03)
  • [7] Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
    Basko, DM
    Aleiner, IL
    Altshuler, BL
    [J]. ANNALS OF PHYSICS, 2006, 321 (05) : 1126 - 1205
  • [8] Return probability for the Anderson model on the random regular graph
    Bera, Soumya
    De Tomasi, Giuseppe
    Khaymovich, Ivan M.
    Scardicchio, Antonello
    [J]. PHYSICAL REVIEW B, 2018, 98 (13)
  • [9] Density Propagator for Many-Body Localization: Finite-Size Effects, Transient Subdiffusion, and Exponential Decay
    Bera, Soumya
    De Tomasi, Giuseppe
    Weiner, Felix
    Evers, Ferdinand
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (19)
  • [10] Delocalized glassy dynamics and many-body localization
    Biroli, G.
    Tarzia, M.
    [J]. PHYSICAL REVIEW B, 2017, 96 (20)