Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: a review

被引:138
|
作者
Zhang, Xiao [1 ]
Jiang, San Ping [1 ]
机构
[1] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
Graphitic carbon nitride/titanium oxide; nanocomposites; Photocatalysis and photocatalysts; Carbon dioxide reduction; H-2; generation; GRAPHITIC CARBON NITRIDE; ANATASE TIO2 NANOPARTICLES; REDUCED GRAPHENE OXIDE; IN-SITU SYNTHESIS; HYDROGEN EVOLUTION; POROUS G-C3N4; PHOTOELECTROCATALYTIC REDUCTION; (G-C3N4)-BASED PHOTOCATALYSTS; HETEROJUNCTION PHOTOCATALYSTS; ENERGY-CONVERSION;
D O I
10.1016/j.mtener.2021.100904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven photocatalysts for water splitting and CO2 reduction have been widely studied for dealing with environmental pollution and energy sustainability issues. Among the most promising semiconductor photocatalysts, graphitic carbon nitride (g-C3N4) and TiO2 (anatase) with band gaps of similar to 2.7 and similar to 3.2 eV, respectively, are investigated extensively. However, the high photogenerated carrier recombination efficiency of g-C3N4 and the relatively wide band gap of TiO2 (responsive to ultraviolet light only) are the factors that can lower the photocatalytic activities of the materials. Thus, one of the prevalent strategies is to construct g-C3N4/TiO2 nanocomposites to promote charge carrier separation and to improve photoabsorption in the visible region for attaining efficient utilization of solar energy in photocatalytic water splitting, CO2 reduction, and organic pollutant photodegradation. Here, a comprehensive overview is made on the exploitation of g-C3N4/TiO2 nanocomposites for photocatalytic applications, emphasizing layered heterostructures, for solar-driven H-2 generation and CO2 reduction. Challenges in resolving various issues such as low efficiency, low stability, and noble metal cocatalyst dependency, as well as band gap narrowing accompanied reduction in redox ability of the g-C3N4/TiO2 nanocomposites, are discussed. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] g-C3N4/Ti-defective TiO2 p-n heterojunction to improve the photocatalytic CO2 reduction activity
    Liang, Wen
    Yang, Yanqiu
    Liu, Zhiyu
    Zhang, MeiXia
    Kong, Lingru
    Song, Peng
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 177
  • [22] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [23] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    APPLIED SURFACE SCIENCE, 2023, 638
  • [24] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    CATALYSIS TODAY, 2018, 300 : 160 - 172
  • [25] G-C3N4/TiO2 nanotube array for enhanced photoelectrochemical water splitting
    Abish, V. S. Jim
    Raja, D. Henry
    Davidson, D. Jonas
    CURRENT APPLIED PHYSICS, 2024, 63 : 105 - 115
  • [26] Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting
    Fang, Yuxuan
    Huang, Wenxin
    Yang, Siyuan
    Zhou, Xunfu
    Ge, Chunyu
    Gao, Qiongzhi
    Fang, Yueping
    Zhang, Shengsen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (35) : 17378 - 17387
  • [27] A review on photocatalytic CO2 reduction of g-C3N4 and g-C3N4-based photocatalysts modified by CQDs
    Zhao, Yuan
    Yang, Dongyin
    Yu, Cailian
    Yan, Hong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [28] Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction
    Mo, Zhao
    Zhu, Xingwang
    Jiang, Zhifeng
    Song, Yanhua
    Liu, Daobin
    Li, Hongping
    Yang, Xiaofei
    She, Yuanbin
    Lei, Yucheng
    Yuan, Shouqi
    Li, Huaming
    Song, Li
    Yan, Qingyu
    Xu, Hui
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 256
  • [29] Activated g-C3N4 Photocatalyst with Defect Engineering for Efficient Reduction of CO2 in Water
    Tong, Zhenwei
    Hai, Yuyan
    Wang, Baodeng
    Lv, Fei
    Zhong, Zhencheng
    Xiong, Rihua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (23): : 11067 - 11075
  • [30] Surface C≡N bonds mediate photocatalytic CO2 reduction into efficient CH4 production in TiO2-decorated g-C3N4 nanosheets
    Wu, Qifan
    Jiang, Haojie
    Ren, Hengdong
    Wu, Yin
    Zhou, Yong
    Chen, Jian
    Xu, Xiaobing
    Wu, Xinglong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 663 : 825 - 833