REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES

被引:38
作者
Huang, Long [1 ]
Liu, Jun [2 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ China, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Expansive matrix; (mixed-norm) Hardy space; (mixed-norm) Campanato space; maximal function; (finite) atom; Littlewood-Paley function; duality; Calderon-Zygmund operator; LITTLEWOOD-PALEY CHARACTERIZATIONS; PARABOLIC EQUATIONS; LORENTZ SPACES; SOBOLEV SPACES; RD-SPACES; BOUNDEDNESS; OPERATORS; BESOV; LP; LEBESGUE;
D O I
10.3934/cpaa.2020132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (p)over-right-arrow is an element of (0, infinity)(n) and A be a general expansive matrix on R-n. In this article, via the non-tangential grand maximal function, the authors first introduce the anisotropic mixed-norm Hardy spaces H-A((p)over-right-arrow)(R-n) associated with A and then establish their radial or non-tangential maximal function characterizations. Moreover, the authors characterize H-A((p)over-right-arrow)(R-n), respectively, by means of atoms, finite atoms, Lusin area functions, Littlewood-Paley g-functions or g(lambda)*-functions via first establishing an anisotropic Fefferman-Stein vector-valued inequality on the mixed-norm Lebesgue space L(p)over-right-arrow(R-n) . In addition, the authors also obtain the duality between H-A((p)over-right-arrow)(R-n) and the anisotropic mixed-norm Campanato spaces. As applications, the authors establish a criterion on the boundedness of sublinear operators from H-A((p)over-right-arrow)(R-n) into a quasi-Banach space. Applying this criterion, the authors then obtain the boundedness of anisotropic convolutional delta-type and non-convolutional beta-order Calderon-Zygmund operators from H-A((p)over-right-arrow)(R-n) to itself [or to L(p)over-right-arrow(R-n)]. As a corollary, the boundedness of anisotropic convolutional delta-type Calderon-Zygmund operators on the mixed-norm Lebesgue space L(p)over-right-arrow(R-n) with (p)over-right-arrow is an element of (1, infinity)(n) is also presented.
引用
收藏
页码:3033 / 3082
页数:50
相关论文
共 65 条
[1]   Anisotropic Hardy-Lorentz Spaces with Variable Exponents [J].
Almeida, Victor ;
Betancor, Jorge J. ;
Rodriguez-Mesa, Lourdes .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (06) :1219-1273
[2]  
[Anonymous], J MATH STUDY
[3]  
[Anonymous], 2006, THEORY FUNCTION SPAC
[4]   EXTENDED INEQUALITY FOR MAXIMAL FUNCTION [J].
BAGBY, RJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (02) :419-422
[5]  
Benea C., PREPRINT
[6]   MULTIPLE VECTOR-VALUED INEQUALITIES VIA THE HELICOIDAL METHOD [J].
Benea, Cristina ;
Muscalu, Camil .
ANALYSIS & PDE, 2016, 9 (08) :1931-1988
[7]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[8]  
Bownik M, 2003, MEM AM MATH SOC, V164, P1
[9]  
Bownik M., PREPRINT
[10]   Weighted anisotropic product Hardy spaces and boundedness of sublinear operators [J].
Bownik, Marcin ;
Li, Baode ;
Yang, Dachun ;
Zhou, Yuan .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :392-442