Thermodynamic evaluation of an ammonia-fueled combined-cycle gas turbine process operated under fuel-rich conditions

被引:46
作者
Keller, Martin [1 ,4 ]
Koshi, Mitsuo [2 ]
Otomo, Junichiro [1 ]
Iwasaki, Hiroshi [2 ]
Mitsumori, Teruo [2 ]
Yamada, Koichi [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778563, Japan
[2] Japan Sci & Technol Agcy, Ctr Low Carbon Soc Strategy, Chiyoda Ku, 7 Gabancho, Tokyo 1020076, Japan
[3] Univ Tokyo, Off President, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Frontier, 16-1 Onogawa, Tsukuba, Ibaraki 3058569, Japan
基金
日本学术振兴会;
关键词
Gas turbine; Combined cycle; Ammonia combustion; Hydrogen combustion; NOx emission; COMBUSTION CHARACTERISTICS; HYDROGEN;
D O I
10.1016/j.energy.2020.116894
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ammonia is a promising energy carrier and carbon-free fuel for, power generation using combined-cycle gas turbines. However, its use results in the generation of relatively large amounts of NOx in the combustor. To address this issue, we propose a combined-cycle configuration including exhaust gas recirculation (EGR), in which the gas turbine is operated under fuel-rich conditions and the uncombusted hydrogen is burned in the heat-recovery steam generator (HRSG). Thus, hydrogen in the flue gas of the gas turbine increases the output power and improves the thermal efficiency of the system. Furthermore, in the combined system with EGR, the exhaust gas does not contain O-2 and the combustion temperature can, be reduced without altering the equivalence ratio. The proposed system is evaluated by thermodynamic modeling, and we find that low NOx emissions can be achieved while maintaining high thermal efficiency. Cold EGR is likely to be required to maintain the turbine inlet temperature below a technically feasible level, and a tradeoff between thermal efficiency and the NOx concentration at the combustor outlet is observed. The ideal operating conditions for this process thus depend on the technically feasible turbine inlet temperature, EGR ratio, and the permissible NOx concentration in the exhaust gas. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Ansys Inc, 2019, ANSYS CHEMKIN PRO VE
[2]   Emerging electrochemical energy conversion and storage technologies [J].
Badwal, Sukhvinder P. S. ;
Giddey, Sarbjit S. ;
Munnings, Christopher ;
Bhatt, Anand I. ;
Hollenkamp, Anthony F. .
FRONTIERS IN CHEMISTRY, 2014, 2
[3]   Fuel rich ammonia-hydrogen injection for humidified gas turbines [J].
Bozo, M. Gutesa ;
Vigueras-Zuniga, M. O. ;
Buffi, M. ;
Seljak, T. ;
Valera-Medina, A. .
APPLIED ENERGY, 2019, 251
[4]  
Faehn D, 1966, SAE TECH PAP SER, P1, DOI [10.4271/660769, DOI 10.4271/660769]
[5]   Ammonia as a Renewable Energy Transportation Media [J].
Giddey, S. ;
Badwal, S. P. S. ;
Munnings, C. ;
Dolan, M. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11) :10231-10239
[6]   Theoretical analysis of environmental and energetic performance of very high temperature turbo-jet engines [J].
Godin, T ;
Harvey, S ;
Stouffs, P .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 1999, 38 (05) :442-451
[7]  
Godin T, 1997, COAL BIOMASS ALTERN, P2, DOI [10.1115/97-GT-302, DOI 10.1115/97-GT-302]
[8]   Extinction limits of an ammonia/air flame propagating in a turbulent field [J].
Ichimura, Ryo ;
Hadi, Khalid ;
Hashimoto, Nozomu ;
Hayakawa, Akihiro ;
Kobayashi, Hideaki ;
Fujita, Osamu .
FUEL, 2019, 246 :178-186
[9]   Thermodynamic evaluation of open cycle gas turbines with carbon-free fuels H2 and NH3 at high temperatures [J].
Keller, Martin ;
Koshi, Mitsuo ;
Otomo, Junichiro ;
Iwasaki, Hiroshi ;
Mitsumori, Teruo ;
Yamada, Koichi .
JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2019, 14 (02)
[10]   Science and technology of ammonia combustion [J].
Kobayashi, Hideaki ;
Hayakawa, Akihiro ;
Somarathne, K. D. Kunkuma A. ;
Okafor, Ekenechukwu C. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (01) :109-133