On the solvability of a boundary value problem for nonlinear wave equations in angular domains

被引:2
作者
Kharibegashvili, S. S. [1 ]
Jokhadze, O. M.
机构
[1] Tbilisi Ivane Javakhishvili State Univ, A Razmadze Math Inst, Tbilisi, Georgia
关键词
CAUCHY-GOURSAT PROBLEM;
D O I
10.1134/S0012266116050104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a one-dimensional wave equation with a weak nonlinearity, we study the Darboux boundary value problem in angular domains, for which we analyze the existence and uniqueness of a global solution and the existence of local solutions as well as the absence of global solutions.
引用
收藏
页码:644 / 666
页数:23
相关论文
共 20 条
[1]  
[Anonymous], USPEKHI MAT NAUK
[2]  
[Anonymous], 2001, T MAT I STEKLOVA
[3]  
Berikelashvili G.K., 2008, DIFF URAVN, V44, P359
[4]  
Dzhokhadze O. M., 2008, Mat. Zametki, V84, P693
[5]  
Fikhtengol'ts G.M., 1969, KURS DIFFERENTSIALNO
[6]  
GILBARG D., 2015, Elliptic Partial Differential Equations of Second Order
[7]  
Goman O.G., 1968, VESTN MOSKOV U MAT M, P84
[8]   The first Darboux problem for wave equations with a nonlinear positive source term [J].
Jokhadze, O. ;
Midodashvili, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) :3005-3015
[9]   On existence and nonexistence of global solutions of Cauchy-Goursat problem for nonlinear wave equations [J].
Jokhadze, O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) :1033-1045
[10]   Cauchy-Goursat Problem for One-Dimensional Semilinear Wave Equations [J].
Jokhadze, O. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (04) :367-382