Grain boundary engineering to overcome temper embrittlement in martensitic steel

被引:13
作者
Godbole, Kirtiratan [1 ]
Das, C. R. [2 ,3 ]
Albert, S. K. [2 ,3 ]
Panigrahi, Bharat B. [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Mat Sci & Met Engn, Sangareddy 502285, Telangana, India
[2] Indira Gandhi Ctr Atom Res, Kalpakkam 603102, Tamil Nadu, India
[3] Homi Bhabha Natl Inst, Kalpakkam 603102, Tamil Nadu, India
关键词
Grain boundaries; Interfaces; Segregation; Toughness; Martensite; Phase transformation; AUSTENITE; SEGREGATION; SUPERALLOY; RESISTANCE; FERRITE; FATIGUE;
D O I
10.1016/j.matlet.2020.127321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Grain boundary engineering (GBE) approach has been introduced in martensitic steel through quenching and partitioning (Q&P) heat treatment to overcome temper embrittlement. This heat treatment increases fraction of low energy coincidence site lattice (CSL) boundary from 0.12 in Q&P specimen to 0.22 in Q&P-tempered specimen through transformation of retained austenite to martensite. Presence of austenite in martensitic matrix produces different interfaces. Low energy austenite / austenite and austenite / martensite interfaces reduces segregation of tramp elements during tempering leading to increased toughness compared to normalized and tempered specimen having high energy martensite / martensite interface. Increased toughness is accompanied by a change in fracture morphology from intergranular fracture to typical dimple fracture. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Study on tempering behaviour of AISI 410 stainless steel [J].
Chakraborty, Gopa ;
Das, C. R. ;
Albert, S. K. ;
Bhaduri, A. K. ;
Paul, V. Thomas ;
Panneerselvam, G. ;
Dasgupta, Arup .
MATERIALS CHARACTERIZATION, 2015, 100 :81-87
[2]   The Application of Grain Boundary Engineering to a Nickel Base Superalloy for 973 K (700 degrees C) USC Power Plants [J].
Chong, Yan ;
Liu, Zhengdong ;
Godfrey, Andy ;
Liu, Wei ;
Weng, Yuqing .
METALLURGICAL AND MATERIALS TRANSACTIONS E-MATERIALS FOR ENERGY SYSTEMS, 2014, 1 (01) :58-66
[3]   Influence of Coincidence Site Lattice Boundary on Creep Resistance of P91 Steel Weldments [J].
Das, C. R. ;
Albert, S. K. ;
Laha, K. ;
Swaminathan, J. ;
Ravi, S. ;
Bhaduri, A. K. ;
Murty, B. S. ;
Mayr, Peter .
STRUCTURAL INTEGRITY, 2014, 86 :80-87
[4]   High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: Role of grain-boundary engineering [J].
Gao, Y ;
Kumar, M ;
Nalla, RK ;
Ritchie, RO .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2005, 36A (12) :3325-3333
[5]   Modelling of intergranular damage propagation [J].
Gertsman, VY ;
Tangri, K .
ACTA MATERIALIA, 1997, 45 (10) :4107-4116
[6]   PHOSPHORUS AND CARBON SEGREGATION - EFFECTS ON FATIGUE AND FRACTURE OF GAS-CARBURIZED MODIFIED 4320 STEEL [J].
HYDE, RS ;
KRAUSS, G ;
MATLOCK, DK .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1994, 25 (06) :1229-1240
[7]   A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J].
Kurban, M ;
Erb, U ;
Aust, KT .
SCRIPTA MATERIALIA, 2006, 54 (06) :1053-1058
[8]   A grain boundary engineering approach to promote special boundaries in Pb-base alloy [J].
Lee, DS ;
Ryoo, HS ;
Hwang, SK .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 354 (1-2) :106-111
[9]  
Lehockey EM, 1998, METALL MATER TRANS A, V29, P3069, DOI [10.1007/s11661-998-0214-y, 10.1007/s11661-998-0190-2]
[10]   Modeling of resistance curve of high-angle grain boundary in Fe-3 wt.% Si alloy [J].
Qiao, Y .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 361 (1-2) :350-357