Abiological loss of endosulfan and related chlorinated organic compounds from aqueous systems in the presence and absence of oxygen

被引:45
作者
Guerin, TF
机构
[1] Sydney, New South Wales 2216
[2] Shell Engineering Ltd., NSW State Office, Granville 2142 NSW
关键词
endosulfan; degradation; pesticide; half-lives; hydrolysis; non-biological degradation; bi-phasic loss; persistence; abiotic loss; biodegradation; endosulfan sulfate; toxicity; physico-chemical; risk;
D O I
10.1016/S0269-7491(01)00112-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Endosulfan is a cyclodiene organochlorine currently widely used as an insecticide throughout the world. This study reports that the endosulfan isomers can be readily dissipated from aqueous systems at neutral pH in the absence of biological material or chemical catalysts, in the presence or absence of oxygen. The study showed that aldrin, dieldrin, and endosulfan exhibit bi-phasic loss from water in unsealed and butyl rubber sealed vessels. Half-lives are substantially increased for endosulfan I when oxygen is removed from the incubation vessel. The study conditions, where PTFE was used, were such that loss due to volatilization and alkaline chemical hydrolysis was eliminated. Half-lives determined from these data indicate that the parent isomers are much less persistent than the related cyclodienes, aldrin and dieldrin, confirming the findings of previous studies. The major oxidation product of endosulfans I and II, endosulfan sulfate, is less volatile and can persist longer than either of the parent isomers. Endosulfan sulfate was not formed in any of the treatments suggesting that it would not be formed in aerated waters in the absence of microbial activity or strong chemical oxidants. Since endosulfan sulfate is formed in many environments through biological oxidation, and is only slowly degraded (both chemically in sterile media and biologically), it represents a predominant residue of technical grade endosulfan, which finds its way into aerobic and anaerobic aquatic environments. The data obtained contributes to and confirms the existing body of half-life data on endosulfan I and II and its major oxidation product, endosulfan sulfate. The half-life data generated from the current study can be used in models for predicting the loss of chlorinated cyclodiene compounds from aqueous systems. The findings also highlight the importance of critically reviewing half-life data, to determine what the predominant processes are that are acting on the compounds under study. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 25 条
[1]   DEGRADATION OF MALATHION, ENDOSULFAN, AND FENVALERATE IN SEAWATER AND SEAWATER SEDIMENT MICROCOSMS [J].
COTHAM, WE ;
BIDLEMAN, TF .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1989, 37 (03) :824-828
[2]  
GOEBEL H, 1982, RESIDUE REV, V83, P1
[3]  
GREVE PA, 1971, GHENT RIJKSINSTITUUT, V36, P439
[4]  
Guerin T, 1999, REMEDIATION, V9, P51
[5]  
Guerin T.F., 1993, RELATIVE SIGNIFICANC, P240
[6]   EFFICIENT ONE-STEP METHOD FOR THE EXTRACTION OF CYCLODIENE PESTICIDES FROM AQUEOUS-MEDIA AND THE ANALYSIS OF THEIR METABOLITES [J].
GUERIN, TF ;
KIMBER, SWL ;
KENNEDY, IR .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1992, 40 (11) :2309-2314
[7]   DISTRIBUTION AND DISSIPATION OF ENDOSULFAN AND RELATED CYCLODIENES IN STERILE AQUEOUS SYSTEMS - IMPLICATIONS FOR STUDIES ON BIODEGRADATION [J].
GUERIN, TF ;
KENNEDY, IR .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1992, 40 (11) :2315-2323
[8]   The anaerobic degradation of endosulfan by indigenous microorganisms from low-oxygen soils and sediments [J].
Guerin, TF .
ENVIRONMENTAL POLLUTION, 1999, 106 (01) :13-21
[9]  
GUERIN TF, 1995, BIOREMEDIATION RECAL, V7, P157
[10]  
GUERIN TF, 1991, AUSTR COTTON GROWER, V12, P13