Prediction of failure rate of rotary machine using computer Simulations

被引:1
|
作者
Chen, J
Bai, G
Shen, ZM
Li, XF
Fulton, D
Hsu, A
机构
[1] IUPUI, Dept Mech Engn, Indianapolis, IN 46202 USA
[2] IUPUI, Dept Math, Indianapolis, IN 46202 USA
[3] Delco Remy Amer, Indiana, PA USA
来源
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME | 2005年 / 127卷 / 04期
关键词
D O I
10.1115/1.2037088
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Failures call occur in brushless alternators due to interferences between the moving and stationary parts, called "rub." Improper design of component target dimensions and tolerances call result in interferences. A method was developed to evaluate the component tolerances that call create interference in a brushless alternator Mathematic models were created to relate target dimensions to the interferences. Monte Carlo simulation was utilized to statistically evaluate the effects of tolerances on. failure rate. This method allows a designer to avoid potential rub failures while still in the design phase. It call also be used to analyze rotary machines of similar designs.
引用
收藏
页码:768 / 772
页数:5
相关论文
共 50 条
  • [1] Prediction rotary drilling penetration rate in lateritic soils using machine learning models
    Eugène Gatchouessi Kamdem
    Franck Ferry Kamgue Tiam
    Luc Leroy Mambou Ngueyep
    Olivier Wounabaissa
    Hugues Richard Lembo Nnomo
    Abraham Kanmogne
    Discover Civil Engineering, 2 (1):
  • [2] Prediction of Pipe Failure Rate in Heating Networks Using Machine Learning Methods
    Beloev, Hristo Ivanov
    Saitov, Stanislav Radikovich
    Filimonova, Antonina Andreevna
    Chichirova, Natalia Dmitrievna
    Babikov, Oleg Evgenievich
    Iliev, Iliya Krastev
    ENERGIES, 2024, 17 (14)
  • [3] Error Prediction in Electromagnetic Simulations Using Machine Learning
    Karaosmanoglu, Bariscan
    Ergul, Ozgur
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 787 - 788
  • [4] Machine Failure Prediction Using Survival Analysis
    Papathanasiou, Dimitris
    Demertzis, Konstantinos
    Tziritas, Nikos
    FUTURE INTERNET, 2023, 15 (05)
  • [5] COMPUTER SIMULATIONS OF PREDICTION OF DEFLECTIONS
    MORRISON, F
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (06): : 372 - 373
  • [6] Visual Result Prediction in Electromagnetic Simulations Using Machine Learning
    Karaosmanoglu, Bariscan
    Ergul, Ozgur
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (11): : 2264 - 2266
  • [7] Virtual Machine Failure Prediction using Log Analysis
    Nam, Sukhyun
    Hong, Jibum
    Yoo, Jae-Hyoung
    Hong, James Won-Ki
    2021 22ND ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2021, : 279 - 284
  • [8] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182
  • [9] Prediction of creep failure time using machine learning
    Soumyajyoti Biswas
    David Fernandez Castellanos
    Michael Zaiser
    Scientific Reports, 10
  • [10] Prediction of creep failure time using machine learning
    Biswas, Soumyajyoti
    Castellanos, David Fernandez
    Zaiser, Michael
    SCIENTIFIC REPORTS, 2020, 10 (01)