On the importance of similarity characteristics of curve clustering and its applications

被引:10
作者
Cheam, Amay S. M. [1 ]
Fredette, Marc [1 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
FUNCTIONAL DATA; REGISTRATION;
D O I
10.1016/j.patrec.2020.04.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an overview of curve clustering from the similarity characteristics perspective, with a goal of providing useful advice and references regarding fundamental concepts that are accessible to the broad community of curve clustering practitioners. We introduce a new taxonomy of curve clustering by proposing four major similarity characteristics. We reviewed some contributions to curve clustering with respect to their similarity characteristics along with their applications. Lastly, we give an in-depth discussion of the overall challenges in this field with respect to similarity characteristics, highlight open research questions and discuss guidelines for further progress. © 2020
引用
收藏
页码:360 / 367
页数:8
相关论文
共 44 条
[1]   Unsupervised curve clustering using B-splines [J].
Abraham, C ;
Cornillon, PA ;
Matzner-Lober, E ;
Molinari, N .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) :581-595
[2]   Clustering misaligned dependent curves applied to varved lake sediment for climate reconstruction [J].
Abramowicz, Konrad ;
Arnqvist, Per ;
Secchi, Piercesare ;
de Luna, Sara Sjostedt ;
Vantini, Simone ;
Vitelli, Valeria .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (01) :71-85
[3]   A review of robust clustering methods [J].
Angel Garcia-Escudero, Luis ;
Gordaliza, Alfonso ;
Matran, Carlos ;
Mayo-Iscar, Agustin .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) :89-109
[4]  
[Anonymous], 1977, Elementary probability theory
[5]   CLUSTERING FUNCTIONAL DATA USING WAVELETS [J].
Antoniadis, Anestis ;
Brossat, Xavier ;
Cugliari, Jairo ;
Poggi, Jean-Michel .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2013, 11 (01)
[6]   Identification of cyclone-track regimes in the North Atlantic [J].
Blender, R ;
Fraedrich, K ;
Lunkeit, F .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1997, 123 (539) :727-741
[7]   Model-based clustering of high-dimensional data: A review [J].
Bouveyron, Charles ;
Brunet-Saumard, Camille .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 :52-78
[8]   Model-based clustering of time series in group-specific functional subspaces [J].
Bouveyron, Charles ;
Jacques, Julien .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (04) :281-300
[9]   Model-based clustering for spatiotemporal data on air quality monitoring [J].
Cheam, A. S. M. ;
Marbac, M. ;
McNicholas, P. D. .
ENVIRONMETRICS, 2017, 28 (03)
[10]   Modeling and clustering water demand patterns from real-world smart meter data [J].
Cheifetz N. ;
Noumir Z. ;
Samé A. ;
Sandraz A.-C. ;
Féliers C. ;
Heim V. .
Drinking Water Engineering and Science, 2017, 10 (02) :75-82