Ionic Processes in Water Electrolysis: The Role of Ion-Selective Membranes

被引:88
作者
Oener, S. Z. [1 ]
Ardo, S. [2 ,3 ]
Boettcher, S. W. [1 ]
机构
[1] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
OXYGEN EVOLUTION ACTIVITY; REGENERATIVE FUEL-CELLS; BIPOLAR MEMBRANE; EXCHANGE MEMBRANES; ENERGY-STORAGE; HYDROGEN OXIDATION; PH GRADIENTS; PROTON; ELECTROCATALYSTS; TRANSPORT;
D O I
10.1021/acsenergylett.7b00764
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic separation and recombination processes in water electrolysis and fuel cell devices are of equal importance as the electron transfer processes that occur at the electrode surfaces. We illustrate the basic thermodynamic concepts governing the flow of ions in electrolyzer and fuel cell systems and the effects of pH gradients on the electrochemical phenomena. Particularly, we focus on the use of bipolar membranes, which are composed of anion- and cation-selective membranes enabling operation with different pH environments at the anode versus the cathode. The use of bipolar membranes thus broadens the materials' availability and could enable low-cost electrolysis systems that operate at very high efficiency. We end by discussing different materials and highlighting key gaps needed to realize such a system.
引用
收藏
页码:2625 / 2634
页数:10
相关论文
共 107 条
[1]  
Abgrall P., 2010, MICROFLUID DEVICES N, V80, P155
[2]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[3]   Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting [J].
Ager, Joel W. ;
Shaner, Matthew R. ;
Walczak, Karl A. ;
Sharp, Ian D. ;
Ardo, Shane .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :2811-2824
[4]   PEM/AEM Junction Design for Bipolar Membrane Fuel Cells [J].
Ahlfield, John M. ;
Liu, Lisha ;
Kohl, Paul A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :F1165-F1171
[5]   Studies on ion-exchange membranes .1. Effect of humidity on the conductivity of Nafion(R) [J].
Anantaraman, AV ;
Gardner, CL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1996, 414 (02) :115-120
[6]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[7]   Anion Exchange Membrane Fuel Cells [J].
Arges, Christopher G. ;
Ramani, Vijay ;
Pintauro, Peter N. .
ELECTROCHEMICAL SOCIETY INTERFACE, 2010, 19 (02) :31-35
[8]   Enhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes [J].
Bae, Je Hyun ;
Kim, Yang-Rae ;
Kim, R. Soyoung ;
Chung, Taek Dong .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (26) :10645-10653
[9]   ION-TRANSPORT AND WATER DISSOCIATION IN BIPOLAR ION-EXCHANGE MEMBRANES [J].
BASSIGNANA, IC ;
REISS, H .
JOURNAL OF MEMBRANE SCIENCE, 1983, 15 (01) :27-41
[10]   Material requirements for membrane separators in a water-splitting photoelectrochemical cell [J].
Berger, Alan ;
Segalman, R. A. ;
Newman, J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1468-1476