scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells

被引:68
作者
Cao, Yuan [1 ]
Zhu, Junjie [2 ]
Jia, Peilin [1 ]
Zhao, Zhongming [1 ,3 ,4 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Houston, TX 77030 USA
[4] Vanderbilt Univ, Dept Biomed Informat, Med Ctr, Nashville, TN 37203 USA
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
single cell; RNA sequencing; database; expression profile; cell type; differential expression; PROGENITOR; STEM; TOOL;
D O I
10.3390/genes8120368
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNA-Seq) is rapidly becoming a powerful tool for high-throughput transcriptomic analysis of cell states and dynamics at the single cell level. Both the number and quality of scRNA-Seq datasets have dramatically increased recently. A database that can comprehensively collect, curate, and compare expression features of scRNA-Seq data in humans has not yet been built. Here, we present scRNASeqDB, a database that includes almost all the currently available human single cell transcriptome datasets (n = 38) covering 200 human cell lines or cell types and 13,440 samples. Our online web interface allows users to rank the expression profiles of the genes of interest across different cell types. It also provides tools to query and visualize data, including Gene Ontology and pathway annotations for differentially expressed genes between cell types or groups. The scRNASeqDB is a useful resource for single cell transcriptional studies. This database is publicly available at https://bioinfo.uth.edu/scrnaseqdb/.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Empirical Bayes Analysis of RNA-seq Data for Detection of Gene Expression Heterosis
    Niemi, Jarad
    Mittman, Eric
    Landau, Will
    Nettleton, Dan
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 614 - 628
  • [42] Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation
    Nussbaum, Yulia I.
    Hossain, K. S. M. Tozammel
    Kaifi, Jussuf
    Warren, Wesley C.
    Shyu, Chi-Ren
    Mitchem, Jonathan B.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 154
  • [43] Cardiovascular utility of single cell RNA-Seq
    Safabakhsh, Sina
    Ma, Wei Feng
    Miller, Clint L. L.
    Laksman, Zachary
    CURRENT OPINION IN CARDIOLOGY, 2023, 38 (03) : 193 - 200
  • [44] Transcriptome Analysis of Cattle Embryos Based on Single Cell RNA-Seq
    Wang, Jie
    Fang, Di
    Zhao, Jianqing
    Huang, Fei
    Liu, Bo
    Tao, Weikun
    Cui, Baoshan
    Gao, Qinghua
    PAKISTAN JOURNAL OF ZOOLOGY, 2023, 55 (04) : 1865 - 1872
  • [45] Gene Selection for Single-cell RNA-seq Data Based on Information Gain and Genetic Algorithm
    Zhang, Jie
    Feng, Junhong
    2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, : 57 - 61
  • [46] Co-Expression Networks for Causal Gene Identification Based on RNA-Seq Data ofCorynebacterium pseudotuberculosis
    Franco, Edian F.
    Rana, Pratip
    Queiroz Cavalcante, Ana Lidia
    da Silva, Artur Luiz
    Pinto Gomide, Anne Cybelle
    Carneiro Folador, Adriana R.
    Azevedo, Vasco
    Ghosh, Preetam
    Ramos, Rommel T. J.
    GENES, 2020, 11 (07) : 1 - 17
  • [47] The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data
    Perroud, Pierre-Francois
    Haas, Fabian B.
    Hiss, Manuel
    Ullrich, Kristian K.
    Alboresi, Alessandro
    Amirebrahimi, Mojgan
    Barry, Kerrie
    Bassi, Roberto
    Bonhomme, Sandrine
    Chen, Haodong
    Coates, Juliet C.
    Fujita, Tomomichi
    Guyon-Debast, Anouchka
    Lang, Daniel
    Lin, Junyan
    Lipzen, Anna
    Nogue, Fabien
    Oliver, Melvin J.
    Ponce de Leon, Ines
    Quatrano, Ralph S.
    Rameau, Catherine
    Reiss, Bernd
    Reski, Ralf
    Ricca, Mariana
    Saidi, Younousse
    Sun, Ning
    Szoevenyi, Peter
    Sreedasyam, Avinash
    Grimwood, Jane
    Stacey, Gary
    Schmutz, Jeremy
    Rensing, Stefan A.
    PLANT JOURNAL, 2018, 95 (01) : 168 - 182
  • [48] Differential expression analysis using a model-based gene clustering algorithm for RNA-seq data
    Osabe, Takayuki
    Shimizu, Kentaro
    Kadota, Koji
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [49] PlantExp: a platform for exploration of gene expression and alternative splicing based on public plant RNA-seq samples
    Liu, Jinding
    Zhang, Yaru
    Zheng, Yiqing
    Zhu, Yali
    Shi, Yapin
    Guan, Zhuoran
    Lang, Kun
    Shen, Danyu
    Huang, Wen
    Dou, Daolong
    NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D1483 - D1491
  • [50] Parametric analysis of RNA-seq expression data
    Konishi, Tomokazu
    GENES TO CELLS, 2016, 21 (06) : 639 - 647