Fabrication of dense diametel-tuned quantum dot micropillar arrays for applications in photonic information processing

被引:28
作者
Heuser, Tobias [1 ]
Grosse, Jan [1 ]
Kaganskiy, Arsenty [1 ]
Brunner, Daniel [2 ]
Reitzenstein, Stephan [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, Hardenbergstr 36, D-10623 Berlin, Germany
[2] Univ Bourgogne Franche Comte, FEMTO ST Opt Dept, UMR CNRS 6174, 15B Ave Montboucons, F-25030 Besancon, France
基金
欧洲研究理事会;
关键词
SPONTANEOUS EMISSION;
D O I
10.1063/1.5050669
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the realization of a dense, large-scale array of 900 quantum dot micropillar cavities with high spectral homogeneity. We target applications in photonic information processing such as optical reservoir computing which can be implemented in large arrays of optically coupled microlasers. To achieve the required spectral homogeneity for the underlying optical injection locking, we calculate and set the diameter of each individual micropillar within the array during the fabrication process by taking the diameter-dependent emission wavelength of the microcavities into account. Using this kind of diameter adjustment, we improve the overall wavelength homogeneity in a 30 x 30 micropillar array by 64% and reduce the standard deviation of the resonance energy distribution by 26% from 352 mu eV in the planar unprocessed sample to 262 mu eV in the fabricated array. In addition, we present a detailed analysis of the device quality and the diameter control of the micropillar's emission wavelength, which includes important information for the effective application of the developed fabrication method for the realization of highly homogeneous micropillar arrays in the future. (C) 2018 Author(s).
引用
收藏
页数:9
相关论文
共 22 条
[1]   Phase diffusion and locking in single-qubit lasers [J].
Andre, Stephan ;
Brosco, Valentina ;
Shnirman, Alexander ;
Schoen, Gerd .
PHYSICAL REVIEW A, 2009, 79 (05)
[2]   Strongly coupled single quantum dot in a photonic crystal waveguide cavity [J].
Brossard, F. S. F. ;
Xu, X. L. ;
Williams, D. A. ;
Hadjipanayi, M. ;
Hugues, M. ;
Hopkinson, M. ;
Wang, X. ;
Taylor, R. A. .
APPLIED PHYSICS LETTERS, 2010, 97 (11)
[3]   Reconfigurable semiconductor laser networks based on diffractive coupling [J].
Brunner, Daniel ;
Fischer, Ingo .
OPTICS LETTERS, 2015, 40 (16) :3854-3857
[4]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[5]   Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback [J].
Bueno, Julian ;
Brunner, Daniel ;
Soriano, Miguel C. ;
Fischer, Ingo .
OPTICS EXPRESS, 2017, 25 (03) :2401-2412
[6]   Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography [J].
Dousse, A. ;
Lanco, L. ;
Suffczynski, J. ;
Semenova, E. ;
Miard, A. ;
Lemaitre, A. ;
Sagnes, I. ;
Roblin, C. ;
Bloch, J. ;
Senellart, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[7]   Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J].
Gerard, JM ;
Sermage, B ;
Gayral, B ;
Legrand, B ;
Costard, E ;
Thierry-Mieg, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1110-1113
[8]   Angle dependence of the spontaneous emission from confined optical modes in photonic dots [J].
Gutbrod, T ;
Bayer, M ;
Forchel, A ;
Knipp, PA ;
Reinecke, TL ;
Tartakovskii, A ;
Kulakovskii, VD ;
Gippius, NA ;
Tikhodeev, SG .
PHYSICAL REVIEW B, 1999, 59 (03) :2223-2229
[9]   Synchronization of laser oscillators, associative memory, and optical neurocomputing [J].
Hoppensteadt, FC ;
Izhikevich, EM .
PHYSICAL REVIEW E, 2000, 62 (03) :4010-4013
[10]   Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity [J].
Kim, Hyochul ;
Shen, Thomas C. ;
Sridharan, Deepak ;
Solomon, Glenn S. ;
Waks, Edo .
APPLIED PHYSICS LETTERS, 2011, 98 (09)