Division algebras with PSL(2, q)-Galois maximal subfields

被引:5
作者
Allman, ES [1 ]
Schacher, MM
机构
[1] Univ So Maine, Dept Math, Portland, ME 04103 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1006/jabr.2000.8682
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a finite group and k is a field, then G is k-admissible if there exists a G-Galois extension L/k such that L is a maximal subfield of a k-division algebra. We prove that PSL(2, 7) is k-admissible for any number field which either fails to contain root -1 or which has two primes lying over the dyadic prime. In addition, PSL(2, 11) is shown to be admissible over Q or any number field k with at least two extensions of the dyadic prime. Indeed, there exist infinitely many linearly disjoint admissible extensions for these groups, (C) toot Academic Press.
引用
收藏
页码:808 / 821
页数:14
相关论文
共 15 条
[1]   POLYNOMIALS WITH PSL(2,7) AS GALOIS GROUP [J].
ERBACH, DW ;
FISCHER, J ;
MCKAY, J .
JOURNAL OF NUMBER THEORY, 1979, 11 (01) :69-75
[2]   CROSSED-PRODUCTS OVER RATIONAL-FUNCTION FIELDS [J].
FEIN, B ;
SALTMAN, DJ ;
SCHACHER, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :454-493
[3]  
FEIT P, 1990, GEOMETRIAE DEDICATA, V36, P1
[4]  
Kaplansky I., 1969, CHICAGO LECT MATH U
[5]   POLYNOMIALS WITH GALOIS GROUP PSL(2,7) [J].
LAMACCHIA, SE .
COMMUNICATIONS IN ALGEBRA, 1980, 8 (10) :983-992
[6]   POLYNOMIALS WITH GALOIS GROUP PSL(2,11) [J].
LAMACCHIA, SE .
COMMUNICATIONS IN ALGEBRA, 1981, 9 (06) :613-625
[7]   REALIZATION OF PSL2(FP)-GROUPS AS GALOIS-GROUPS ON Q [J].
MALLE, G ;
MATZAT, BH .
MATHEMATISCHE ANNALEN, 1985, 272 (04) :549-565
[8]  
Malle G., 1999, INVERSE GALOIS THEOR
[9]  
MALLE G, IN PRESS J SYMBOLIC
[10]   GENERIC GALOIS EXTENSIONS AND PROBLEMS IN FIELD-THEORY [J].
SALTMAN, DJ .
ADVANCES IN MATHEMATICS, 1982, 43 (03) :250-283