A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: Announcement of results

被引:23
作者
Delshams, A
De la Llave, R
Seara, TM
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
来源
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY | 2003年 / 9卷
关键词
nearly integrable Hamiltonian systems; normal forms; slow variables; normally hyperbolic invariant manifolds; KAM theory; Arnold diffusion;
D O I
10.1090/S1079-6762-03-00121-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a geometric mechanism for diffusion in Hamiltonian systems. We also present tools that allow us to verify it in a concrete model. In particular, we verify it in a system which presents the large gap problem.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 37 条
[1]  
[Anonymous], ANN I HENRI POINCARE
[2]  
ARNOLD VI, 1967, ERGODIC PROBLEMS CLA
[3]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[4]  
ARNOLD VI, 1963, USP MAT NAUK, V18, P91
[5]   Drift in phase space: a new variational mechanism with optimal diffusion time [J].
Berti, M ;
Biasco, L ;
Bolle, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06) :613-664
[6]   A functional analysis approach to Arnold diffusion [J].
Berti, M ;
Bolle, P .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (04) :395-450
[7]   Unbounded growth of energy in nonautonomous Hamiltonian systems [J].
Bolotin, S ;
Treschev, D .
NONLINEARITY, 1999, 12 (02) :365-388
[8]  
CHENG CQ, 2003, 03360 MPARC
[9]  
CHIERCHIA L, 1994, ANN I H POINCARE-PHY, V60, P1
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379