Next-generation sequencing to generate interactome datasets

被引:0
|
作者
Yu, Haiyuan [1 ,2 ,3 ,4 ]
Tardivo, Leah [1 ,2 ]
Tam, Stanley [1 ,2 ]
Weiner, Evan [1 ,2 ]
Gebreab, Fana [1 ,2 ]
Fan, Changyu [1 ,2 ]
Svrzikapa, Nenad [1 ,2 ]
Hirozane-Kishikawa, Tomoko [1 ,2 ]
Rietman, Edward [1 ,2 ]
Yang, Xinping [1 ,2 ]
Sahalie, Julie [1 ,2 ]
Salehi-Ashtiani, Kourosh [1 ,2 ]
Hao, Tong [1 ,2 ]
Cusick, Michael E. [1 ,2 ]
Hill, David E. [1 ,2 ]
Roth, Frederick P. [1 ,5 ]
Braun, Pascal [1 ,2 ]
Vidal, Marc [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Canc Biol, Ctr Canc Syst Biol CCSB, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA
[3] Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY USA
[4] Cornell Univ, Weill Inst Cell & Mol Biol, Ithaca, NY USA
[5] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA USA
基金
美国国家卫生研究院;
关键词
OPEN READING FRAMES; PROTEIN; MAP;
D O I
10.1038/NMETH.1597
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing has not been applied to protein-protein interactome network mapping so far because the association between the members of each interacting pair would not be maintained in en masse sequencing. We describe a massively parallel interactome-mapping pipeline, Stitch-seq, that combines PCRCR stitching with next-generation sequencing and used it to generate a new human interactome dataset. Stitch-seq is applicable to various interaction assays and should help expand interactome network mapping.
引用
收藏
页码:478 / U2257
页数:5
相关论文
共 50 条
  • [1] Next-generation sequencing to generate interactome datasets
    Yu H.
    Tardivo L.
    Tam S.
    Weiner E.
    Gebreab F.
    Fan C.
    Svrzikapa N.
    Hirozane-Kishikawa T.
    Rietman E.
    Yang X.
    Sahalie J.
    Salehi-Ashtiani K.
    Hao T.
    Cusick M.E.
    Hill D.E.
    Roth F.P.
    Braun P.
    Vidal M.
    Nature Methods, 2011, 8 (6) : 478 - 480
  • [2] Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing
    Ohashi, Hiroyuki
    Hasegawa, Mai
    Wakimoto, Kentaro
    Miyamoto-Sato, Etsuko
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [3] How to account for the noise in next-generation sequencing datasets?
    Ocari, T.
    Nemoto, T.
    Planul, A.
    Tekinsoy, M.
    Zin, E. A.
    Dalkara, D.
    Ferrari, U.
    HUMAN GENE THERAPY, 2024, 35 (3-4) : A91 - A91
  • [4] A Parallel Algorithm for Compression of Big Next-Generation Sequencing Datasets
    Perez, Sandino Vargas
    Saeed, Fahad
    2015 IEEE TRUSTCOM/BIGDATASE/ISPA, VOL 3, 2015, : 196 - 201
  • [5] Simulating Next-Generation Sequencing Datasets from Empirical Mutation and Sequencing Models
    Stephens, Zachary D.
    Hudson, Matthew E.
    Mainzer, Liudmila S.
    Taschuk, Morgan
    Weber, Matthew R.
    Iyer, Ravishankar K.
    PLOS ONE, 2016, 11 (11):
  • [6] Next-generation sequencing of the next generation
    Darren J. Burgess
    Nature Reviews Genetics, 2011, 12 : 78 - 79
  • [7] Next-generation sequencing for next-generation breeding, and more
    Tsai, Chung-Jui
    NEW PHYTOLOGIST, 2013, 198 (03) : 635 - 637
  • [8] Next-Generation Sequencing: Next-Generation Quality in Pediatrics
    Wortmann, Saskia B.
    Spenger, Johannes
    Preisel, Martin
    Koch, Johannes
    Rauscher, Christian
    Bader, Ingrid
    Mayr, Johannes A.
    Sperl, Wolfgang
    PADIATRIE UND PADOLOGIE, 2018, 53 (06): : 278 - 283
  • [9] Next-Generation Sequencing Demands Next-Generation Phenotyping
    Hennekam, Raoul C. M.
    Biesecker, Leslie G.
    HUMAN MUTATION, 2012, 33 (05) : 884 - 886
  • [10] NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets
    Breese, Marcus R.
    Liu, Yunlong
    BIOINFORMATICS, 2013, 29 (04) : 494 - 496