Alcohol Induces Cellular Senescence and Impairs Osteogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells

被引:50
|
作者
Chen, Xi [1 ,2 ,3 ]
Li, Mao [1 ,2 ]
Yan, Jinku [1 ,2 ]
Liu, Tao [1 ]
Pan, Guoqing [1 ,2 ]
Yang, Huilin [1 ,2 ]
Pei, Ming [4 ,5 ]
He, Fan [1 ,2 ]
机构
[1] Soochow Univ, Affiliated Hosp 1, Dept Orthopaed, 188 Shizi St, Suzhou 215153, Jiangsu, Peoples R China
[2] Soochow Univ, Inst Orthopaed, Coll Med, 708 Renmin Rd, Suzhou 215007, Peoples R China
[3] Soochow Univ, Coll Med, Sch Biol & Basic Med Sci, 199 Renai Rd, Suzhou 215123, Peoples R China
[4] West Virginia Univ, Stem Cell & Tissue Engn Lab, Dept Orthopaed, POB 9196,One Med Ctr Dr, Morgantown, WV 26505 USA
[5] West Virginia Univ, Div Exercise Physiol, POB 9196,One Med Ctr Dr, Morgantown, WV 26505 USA
来源
ALCOHOL AND ALCOHOLISM | 2017年 / 52卷 / 03期
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
OXIDATIVE STRESS; DNA-DAMAGE; OSTEOPOROSIS; EXPRESSION; DIFFERENTIATION; ACCUMULATION; CAPACITY; REPAIR; TISSUE;
D O I
10.1093/alcalc/agx006
中图分类号
R194 [卫生标准、卫生检查、医药管理];
学科分类号
摘要
Aims: Chronic and excessive alcohol consumption is a high-risk factor for osteoporosis. Bone marrow-derived mesenchymal stem cells (BM-MSCs) play an important role in bone formation; however, they are vulnerable to ethanol (EtOH). The purpose of this research was to investigate whether EtOH could induce premature senescence in BM-MSCs and subsequently impair their osteogenic potential. Methods: Human BM-MSCs were exposed to EtOH ranging from 10 to 250 mM. Senescence-associated beta-galactosidase (SA-beta-gal) activity, cell cycle distribution, cell proliferation and reactive oxygen species (ROS) were evaluated. Mineralization and osteoblast-specific gene expression were evaluated during osteogenesis in EtOH-treated BM-MSCs. To investigate the role of silent information regulator Type 1 (SIRT1) in EtOH-induced senescence, resveratrol (ResV) was used to activate SIRT1 in EtOH-treated BM-MSCs. Results: EtOH treatments resulted in senescence-associated phenotypes in BM-MSCs, such as decreased cell proliferation, increased SA-beta-gal activity and G0/G1 cell cycle arrest. EtOH also increased the intracellular ROS and the expression of senescence-related genes, such as p16(INK4 alpha) and p21. The down-regulated levels of SIRT1 accompanied with suppressed osteogenic differentiation were confirmed in EtOH-treated BM-MSCs. Activation of SIRT1 by ResV partially counteracted the effects of EtOH by decreasing senescence markers and rescuing the inhibited osteogenesis. Conclusion: EtOH treatments induced premature senescence in BM-MSCs in a dose-dependent manner that was responsible for EtOH-impaired osteogenic differentiation. Activation of SIRT1 was effective in ameliorating EtOH-induced senescence phenotypes in BMSCs and could potentially lead to a new strategy for clinically preventing or treating alcohol-induced osteoporosis. Short summary: Ethanol (EtOH) treatments induce premature senescence in marrow-derived mesenchymal stem cells in a dose-dependent manner that is responsible for EtOH-impaired osteogenic differentiation. Activation of SIRT1 is effective in ameliorating EtOH-induced senescence phenotypes, which potentially leads to a new strategy for clinically treating alcohol-induced osteoporosis.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 50 条
  • [41] Therapeutic potential of bone marrow-derived mesenchymal stem cells for cutaneous wound healing
    Chen, Jerry S.
    Wong, Victor W.
    Gurtner, Geoffrey C.
    FRONTIERS IN IMMUNOLOGY, 2012, 3
  • [42] Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration
    Fernandes, Marcela
    Valente, Sandra Gomes
    Sabongi, Rodrigo Guerra
    Gomes dos Santos, Joao Baptista
    Leite, Vilnei Mattioli
    Ulrich, Henning
    Nery, Arthur Andrade
    da Silva Fernandes, Maria Jose
    NEURAL REGENERATION RESEARCH, 2018, 13 (01) : 100 - 104
  • [43] Comparative characteristic study from bone marrow-derived mesenchymal stem cells
    Purwaningrum, Medania
    Jamilah, Nabila Syarifah
    Purbantoro, Steven Dwi
    Sawangmake, Chenphop
    Nantavisai, Sirirat
    JOURNAL OF VETERINARY SCIENCE, 2021, 22 (06)
  • [44] Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye
    Lee, Eun-Shil
    Yu, Song-Hee
    Jang, Yu-Jin
    Hwang, Dong-Youn
    Jeon, Chang-Jin
    ACTA HISTOCHEMICA ET CYTOCHEMICA, 2011, 44 (05) : 213 - 221
  • [45] Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis
    Otsuka-Yamaguchi, Rina
    Kitada, Masaaki
    Kuroda, Yasumasa
    Kushida, Yoshihiro
    Wakao, Shohei
    Dezawa, Mari
    STEM CELL RESEARCH, 2021, 53
  • [46] Better therapeutic potential of bone marrow-derived mesenchymal stem cells compared with chorionic villi-derived mesenchymal stem cells in airway injury model
    Ji, Shimeng
    Wu, Chaomin
    Tong, Lin
    Wang, Linlin
    Zhou, Jian
    Chen, Cuicui
    Song, Yuanlin
    REGENERATIVE MEDICINE, 2019, 14 (03) : 165 - 177
  • [47] Potentiation of osteoclastogenesis by adipogenic conversion of bone marrow-derived mesenchymal stem cells
    Mori, Keisuke
    Suzuki, Keiji
    Hozumi, Akira
    Goto, Hisataka
    Tomita, Masato
    Koseki, Hironobu
    Yamashita, Shunichi
    Osaki, Makoto
    BIOMEDICAL RESEARCH-TOKYO, 2014, 35 (02): : 153 - 159
  • [48] Bone marrow-derived mesenchymal stem cells differentiation into tubular epithelial-like cells in vitro
    Wan, Jian-Xin
    Zou, Zhen-Huan
    You, Dan-Yu
    Cui, Jiong
    Pan, Yang-Bin
    CELL BIOCHEMISTRY AND FUNCTION, 2012, 30 (02) : 129 - 138
  • [49] Hypoxia inhibits the spontaneous calcification of bone marrow-derived mesenchymal stem cells
    Huang, Yong-Can
    Zhu, Hong-Ming
    Cai, Jia-Qin
    Huang, Yi-Zhou
    Xu, Jin
    Zhou, Yi
    Chen, Xiao-He
    Li, Xiu-Qun
    Yang, Zhi-Ming
    Deng, Li
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2012, 113 (04) : 1407 - 1415
  • [50] Long non-coding RNA BDNF-AS modulates osteogenic differentiation of bone marrow-derived mesenchymal stem cells
    Feng, Xiaobo
    Lin, Tao
    Liu, Xianzhe
    Yang, Cao
    Yang, Shuhua
    Fu, Dehao
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2018, 445 (1-2) : 59 - 65