Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems

被引:15
作者
Gong, Wei [1 ,2 ]
Li, Buyang [3 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Math & Interdisciplinary Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet boundary control; parabolic equation; finite element method; maximal L-p-regularity; TIME DISCRETIZATIONS; MAXIMAL REGULARITY; APPROXIMATION; INTERPOLATION; OPTIMIZATION; EQUATION; DOMAINS;
D O I
10.1093/imanum/drz029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The parabolic Dirichlet boundary control problem and its finite element discretization are considered in convex polygonal and polyhedral domains. We improve the existing results on the regularity of the solutions by establishing and utilizing the maximal L-p-regularity of parabolic equations under inhomogeneous Dirichlet boundary conditions. Based on the proved regularity of the solutions, we prove O(h(1-1)/q(0-epsilon)) convergence for the semidiscrete finite element solutions for some q(0) > 2, with q(0) depending on the maximal interior angle at the corners and edges of the domain and epsilon being a positive number that can be arbitrarily small.
引用
收藏
页码:2898 / 2939
页数:42
相关论文
共 48 条
[1]   COMBINING MAXIMAL REGULARITY AND ENERGY ESTIMATES FOR TIME DISCRETIZATIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
Akrivis, Georgios ;
Li, Buyang ;
Lubich, Christian .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1527-1552
[2]  
[Anonymous], 2006, Springer Series in Computational Mathematics
[3]   ERROR ESTIMATES FOR DIRICHLET CONTROL PROBLEMS IN POLYGONAL DOMAINS: QUASI-UNIFORM MESHES [J].
Apel, Thomas ;
Mateos, Mariano ;
Pfefferer, Johannes ;
Roesch, Arnd .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (01) :217-245
[4]   ON THE REGULARITY OF THE SOLUTIONS OF DIRICHLET OPTIMAL CONTROL PROBLEMS IN POLYGONAL DOMAINS [J].
Apel, Thomas ;
Mateos, Mariano ;
Pfefferer, Johannes ;
Roesch, Arnd .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) :3620-3641
[5]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[6]   Dirichlet boundary control for a parabolic equation with a final observation I: A space-time mixed formulation and penalization [J].
Ben Belgacem, Faker ;
Bernardi, Christine ;
El Fekih, Henda .
ASYMPTOTIC ANALYSIS, 2011, 71 (1-2) :101-121
[7]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[8]   The stability in Ws,p(Γ) spaces of L2-projections on some convex sets [J].
Casas, E ;
Raymond, JP .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (02) :117-137
[9]   Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations [J].
Casas, Eduardo ;
Raymond, Jean-Pierre .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) :1586-1611
[10]   PENALIZATION OF DIRICHLET OPTIMAL CONTROL PROBLEMS [J].
Casas, Eduardo ;
Mateos, Mariano ;
Raymond, Jean-Pierre .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (04) :782-809