Heat flow for p-harmonic maps between compact Riemannian manifolds

被引:19
作者
Fardoun, A [1 ]
Regbaoui, R [1 ]
机构
[1] Univ Brest, Dept Math, F-29285 Brest, France
关键词
heat flow; p-harmonic maps;
D O I
10.1512/iumj.2002.51.2176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the global existence and convergence of a solution to the heat flow equation of p-harmonic maps (p > 1) between compact Reimannian manifolds when the target manifold is negatively curved.
引用
收藏
页码:1305 / 1320
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1993, COMMUN ANAL GEOM
[2]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[3]   HEAT-FLOW OF P-HARMONIC MAPS WITH VALUES INTO SPHERES [J].
CHEN, YM ;
HONG, MC ;
HUNGERBUHLER, N .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (01) :25-35
[4]   HOLDER REGULARITY FOR THE GRADIENT OF SOLUTIONS OF CERTAIN SINGULAR PARABOLIC-SYSTEMS [J].
CHOE, HJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (11) :1709-1732
[5]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]  
DIBENEDETTO E, 1984, J REINE ANGEW MATH, V357, P1
[7]  
Duzaar F., 1991, ASYMPTOTIC ANAL, V5, P129
[8]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[9]  
Hamilton R. S., 1975, Harmonic maps of manifolds with boundary, V471
[10]   MAPPINGS MINIMIZING THE LP NORM OF THE GRADIENT [J].
HARDT, R ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (05) :555-588