Energetics of mesoscale cell turbulence in two-dimensional monolayers

被引:45
作者
Lin, Shao-Zhen [1 ]
Zhang, Wu-Yang [2 ]
Bi, Dapeng [3 ]
Li, Bo [1 ]
Feng, Xi-Qiao [1 ]
机构
[1] Tsinghua Univ, Inst Biomech & Med Engn, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[3] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
基金
中国国家自然科学基金;
关键词
Kinetics - Boltzmann equation - Cell proliferation - Computational complexity - Cell culture - Growth kinetics - Probability density function - Turbulence - Monolayers;
D O I
10.1038/s42005-021-00530-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Investigation of energy mechanisms at the collective cell scale is a challenge for understanding various biological processes, such as embryonic development and tumor metastasis. Here we investigate the energetics of self-sustained mesoscale turbulence in confluent two-dimensional (2D) cell monolayers. We find that the kinetic energy and enstrophy of collective cell flows in both epithelial and non-epithelial cell monolayers collapse to a family of probability density functions, which follow the q-Gaussian distribution rather than the Maxwell-Boltzmann distribution. The enstrophy scales linearly with the kinetic energy as the monolayer matures. The energy spectra exhibit a power-decaying law at large wavenumbers, with a scaling exponent markedly different from that in the classical 2D Kolmogorov-Kraichnan turbulence. These energetic features are demonstrated to be common for all cell types on various substrates with a wide range of stiffness. This study provides unique clues to understand active natures of cell population and tissues. Understanding the mechanisms underlying collective motion in cells is central to understanding tissue development as well as the emergence of several pathologies. Here, the authors study the mesoscale turbulence of confluent cell monolayers through a combined experimental and numerical approach, finding that energetic statistics are independent of cell types and substrate stiffness.
引用
收藏
页数:9
相关论文
共 71 条
[1]   Universal scaling of active nematic turbulence [J].
Alert, Ricard ;
Joanny, Jean-Francois ;
Casademunt, Jaume .
NATURE PHYSICS, 2020, 16 (06) :682-+
[2]   Glass-like dynamics of collective cell migration [J].
Angelini, Thomas E. ;
Hannezo, Edouard ;
Trepat, Xavier ;
Marquez, Manuel ;
Fredberg, Jeffrey J. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (12) :4714-4719
[3]   Cell Migration Driven by Cooperative Substrate Deformation Patterns [J].
Angelini, Thomas E. ;
Hannezo, Edouard ;
Trepat, Xavier ;
Fredberg, Jeffrey J. ;
Weitz, David A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (16)
[4]  
Atia L, 2018, NAT PHYS, V14, P613, DOI 10.1038/s41567-018-0089-9
[5]   Active Vertex Model for cell-resolution description of epithelial tissue mechanics [J].
Barton, Daniel L. ;
Henkes, Silke ;
Weijer, Cornelis J. ;
Sknepnek, Rastko .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (06)
[6]   Control of cell-cell forces and collective cell dynamics by the intercellular adhesome [J].
Bazellieres, Elsa ;
Conte, Vito ;
Elosegui-Artola, Alberto ;
Serra-Picamal, Xavier ;
Bintanel-Morcillo, Maria ;
Roca-Cusachs, Pere ;
Munoz, Jose J. ;
Sales-Pardo, Marta ;
Guimera, Roger ;
Trepat, Xavier .
NATURE CELL BIOLOGY, 2015, 17 (04) :409-+
[7]   Active Particles in Complex and Crowded Environments [J].
Bechinger, Clemens ;
Di Leonardo, Roberto ;
Loewen, Hartmut ;
Reichhardt, Charles ;
Volpe, Giorgio ;
Volpe, Giovanni .
REVIEWS OF MODERN PHYSICS, 2016, 88 (04)
[8]   Forces Driving Epithelial Spreading in Zebrafish Gastrulation [J].
Behrndt, Martin ;
Salbreux, Guillaume ;
Campinho, Pedro ;
Hauschild, Robert ;
Oswald, Felix ;
Roensch, Julia ;
Grill, Stephan W. ;
Heisenberg, Carl-Philipp .
SCIENCE, 2012, 338 (6104) :257-260
[9]   Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions [J].
Beningo, KA ;
Lo, CM ;
Wang, YL .
METHODS IN CELL-MATRIX ADHESION, 2002, 69 :325-339
[10]   Force transmission during adhesion-independent migration [J].
Bergert, Martin ;
Erzberger, Anna ;
Desai, Ravi A. ;
Aspalter, Irene M. ;
Oates, Andrew C. ;
Charras, Guillaume ;
Salbreux, Guillaume ;
Paluch, Ewa K. .
NATURE CELL BIOLOGY, 2015, 17 (04) :524-+