Parametric self pulsing in a quantum opto-mechanical system

被引:12
作者
Holmes, C. A. [1 ]
Milburn, G. J. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Ctr Quantum Comp Technol, St Lucia, Qld 4072, Australia
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2009年 / 57卷 / 11-12期
基金
澳大利亚研究理事会;
关键词
Optomechanics; nonlinear; parametric; quantum noise; SUB-2ND HARMONIC-GENERATION; HIGH-FINESSE CAVITY; NONEQUILIBRIUM TRANSITIONS;
D O I
10.1002/prop.200900074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe an opto-mechanical system in which the coupling between optical and mechanical degrees of freedom takes the form of a fully quantised third-order parametric interaction. Two physical realisations are proposed: a harmonically trapped atom in a standing wave and the 'membrane in the middle' model. The dominant resonant interaction corresponds to a stimulated Raman process in which two phonons are converted into a single cavity photon. We show that this system can exhibit a stable limit-cycle in which energy is periodically exchanged between optical and mechanical degrees of freedom. This is equivalently described as a parametric self-pulsing. (C)2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1052 / 1063
页数:12
相关论文
共 16 条
[1]   Mechanical effects of light in optical resonators [J].
Domokos, P ;
Ritsch, H .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (05) :1098-1130
[2]   NONEQUILIBRIUM TRANSITIONS IN SUB-2ND HARMONIC-GENERATION .2. QUANTUM-THEORY [J].
DRUMMOND, PD ;
MCNEIL, KJ ;
WALLS, DF .
OPTICA ACTA, 1981, 28 (02) :211-225
[3]   NONEQUILIBRIUM TRANSITIONS IN SUB-2ND HARMONIC-GENERATION .1. SEMI-CLASSICAL THEORY [J].
DRUMMOND, PD ;
MCNEIL, KJ ;
WALLS, DF .
OPTICA ACTA, 1980, 27 (03) :321-335
[4]  
Glendinning P., 1994, STABILITY INSTABILIT
[5]   Observation of strong coupling between a micromechanical resonator and an optical cavity field [J].
Groeblacher, Simon ;
Hammerer, Klemens ;
Vanner, Michael R. ;
Aspelmeyer, Markus .
NATURE, 2009, 460 (7256) :724-727
[6]  
HAKEN H, 1980, Z PHYS B, V37, P339
[7]   Cavity optomechanics: Back-action at the mesoscale [J].
Kippenberg, T. J. ;
Vahala, K. J. .
SCIENCE, 2008, 321 (5893) :1172-1176
[8]   Optomechanical cooling of a macroscopic oscillator by homodyne feedback [J].
Mancini, S ;
Vitali, D ;
Tombesi, P .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :688-691
[9]  
Metcalf H. J., 1999, Laser Cooling and Trapping, V1st
[10]  
MIAO H, 2009, ARXIV09042737