Envelopes of commutative rings

被引:0
作者
Parra, Rafael [1 ]
Saorin, Manuel [1 ]
机构
[1] Univ Los Andes, Fac Ingn, Escuela Basica, Dept Calculo, Merida, Venezuela
关键词
Noetherian ring; envelope; local ring; artinian ring; Krull dimension; MODULES;
D O I
10.1007/s10114-011-9344-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a significative class F of commutative rings, we study the precise conditions under which a commutative ring R has an F-envelope. A full answer is obtained when F is the class of fields, semisimple commutative rings or integral domains. When F is the class of Noetherian rings, we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic. The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope, which we conjecture is the empty class.
引用
收藏
页码:561 / 580
页数:20
相关论文
共 17 条
[1]  
ANDERSON F., 1992, Rings and Categories of Modules
[2]  
[Anonymous], 1989, CAMBRIDGE STUDIES AD
[3]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[4]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[5]   PREPROJECTIVE MODULES OVER ARTIN ALGEBRAS [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1980, 66 (01) :61-122
[6]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[7]   CONVERSE TO A WELL KNOWN THEOREM ON NOETHERIAN RINGS [J].
EAKIN, PM .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :278-&
[8]   INJECTIVE AND FLAT COVERS, ENVELOPES AND RESOLVENTS [J].
ENOCHS, EE .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 39 (03) :189-209
[9]   SUBRINGS OF NOETHERIAN RINGS [J].
FORMANEK, E ;
JATEGAONKAR, AV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (02) :181-186
[10]  
Gobel R., 2006, DE GRUYTER EXP MATH, V41