Morphology control in microwave synthesized bismuth sulfide by using different bismuth salts

被引:18
作者
Diaz-Cruz, Evelyn B. [1 ]
Castelo-Gonzalez, Omar A. [1 ]
Martinez-Alonso, Claudia [2 ]
Montiel-Gonzalez, Zeuz [3 ]
Arenas-Arrocena, M. C. [4 ]
Hu, Hailin [1 ]
机构
[1] UNAM, Inst Energias Renovables, Temixco 62580, Morelos, Mexico
[2] Univ Autonoma Queretaro, Fac Quim, Queretaro 76010, Mexico
[3] PIIT, Unidad Monterrey, CONACYT Ctr Invest Mat Avanzados SC, Apodaca 66628, Nuevo Leon, Mexico
[4] UNAM, Unidad Leon, Escuela Nacl Estudios Super, Guanajuato 37684, Mexico
关键词
Bismuth sulfide; Nanostructures; Morphology; Microwave synthesis; Reaction kinetics; CHEMICAL BATH DEPOSITION; BI2S3; THIN-FILMS; OPTICAL-PROPERTIES; FACILE SYNTHESIS; NANORODS; IRRADIATION; THIOUREA; GROWTH; COMPLEXES; MECHANISM;
D O I
10.1016/j.mssp.2017.10.042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bismuth sulfide (Bi2S3) is a promising semiconductor for optoelectronic applications. In this work we show that different morphologies of Bi2S3 such as nanofibers, nanorods or nano-hedgehogs, can be obtained by microwave assisted solution synthesis. The morphology of the products largely depends on the bismuth salt sources that manifest different dissociation kinetics. Nanofibers of highly crystalline Bi2S3 are formed with the slowly dissociated BiCl3, whereas the morphology of "urchin" type is obtained with highly ionic Bi(NO3)(3). On the other hand, the size of those nanostructures is mostly determined by the thermodynamic parameters of the synthesis, such as the type of solvents, the solution pH, the reaction temperature and the solution concentration. Total diffuse reflectance spectra of the Bi2S3 products suggest a direct band-gap of 1.3 eV with absorption coefficients as a function of the synthesis process. It demonstrates that the morphology of semiconductor nanostructures of Bi2S3 can be modified by controlling the reaction kinetics during the nucleation process in microwave synthesis.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 43 条
  • [1] GROWTH AND MICROHARDNESS STUDIES OF CHALCOGENIDES OF ARSENIC, ANTIMONY AND BISMUTH
    ARIVUOLI, D
    GNANAM, FD
    RAMASAMY, P
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 1988, 7 (07) : 711 - 713
  • [2] Synthesis, vibrational spectra and X-ray structures of copper(I) thiourea complexes
    Bombicz, P
    Mutikainen, I
    Krunks, M
    Leskelä, T
    Madarász, J
    Niinistö, L
    [J]. INORGANICA CHIMICA ACTA, 2004, 357 (02) : 513 - 525
  • [3] Tris(benzylthiolato)bismuth.: Efficient precursor to phase-pure polycrystalline Bi2S3
    Boudjouk, P
    Remington, MP
    Grier, DG
    Jarabek, BR
    McCarthy, GJ
    [J]. INORGANIC CHEMISTRY, 1998, 37 (14) : 3538 - 3541
  • [4] Effects of cadmium salts on the structure, morphology and optical properties of acidic chemical bath deposited CdS thin films
    Cao, M.
    Sun, Y.
    Wu, J.
    Chen, X.
    Dai, N.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 508 (02) : 297 - 300
  • [5] Cuevas C., 2011, REV MEX CIENC FARM, V42
  • [6] NONAQUEOUS CHEMICAL BATH DEPOSITION OF BI2S3 THIN-FILMS
    DESAI, JD
    LOKHANDE, CD
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 1993, 34 (3-4) : 313 - 316
  • [7] The interlace of Bi2S3 nanowires with TiO2 nanorods: An effective strategy for high photoelectrochemical performance
    Han, Minmin
    Jia, Junhong
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 481 : 91 - 99
  • [8] Preparation of uniform Bi2S3 nanorods using xanthate complexes of bismuth(III)
    Han, Qiaofeng
    Chen, Jian
    Yang, Xujie
    Lu, Lude
    Wang, Xin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (38) : 14072 - 14077
  • [9] Preparation of Bi2S3 nanowhiskers and their morphologies
    He, R
    Qian, XF
    Yin, J
    Zhu, ZK
    [J]. JOURNAL OF CRYSTAL GROWTH, 2003, 252 (04) : 505 - 510
  • [10] Chemical deposition of Bi2S3 thin films on glass substrates pretreated with organosilanes
    Huang, L
    Nair, PK
    Nair, MTS
    Zingaro, RA
    Meyers, EA
    [J]. THIN SOLID FILMS, 1995, 268 (1-2) : 49 - 56