Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey

被引:125
作者
Doiron, Brock [1 ]
Mota, Monica [1 ]
Wells, Matthew P. [2 ]
Bower, Ryan [2 ]
Mihai, Andrei [2 ]
Li, Yi [1 ]
Cohen, Lesley F. [1 ]
Alford, Neil McN. [2 ]
Petrov, Peter K. [2 ]
Oulton, Rupert F. [1 ]
Maier, Stefan A. [1 ,3 ]
机构
[1] Imperial Coll London, Dept Phys, London, England
[2] Imperial Coll London, Dept Mat, London, England
[3] Ludwig Maximilians Univ Munchen, Fac Phys, Chair Hybrid Nanosyst, Nanoinst Munchen, Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
plasmonics; Mie theory; material characterization; hot electron devices; photothermal applications; THERMIONIC WORK-FUNCTIONS; SOLAR-CELLS; PHOTOTHERMAL THERAPY; THIN-FILMS; METAL NANOSTRUCTURES; OPTICAL-PROPERTIES; PERFECT ABSORBER; WAVE-GUIDE; LIGHT; NANOPARTICLES;
D O I
10.1021/acsphotonics.8b01369
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using localized surface plasmon resonances (LSPR) to focus electromagnetic radiation to the nanoscale shows the promise of unprecedented capabilities in optoelectronic devices, medical treatments and nanoscale chemistry, due to a strong enhancement of light-matter interactions. As we continue to explore novel applications, we require a systematic quantitative method to compare suitability across different geometries and a growing library of materials. In this work, we propose application-specific figures of merit constructed from fundamental electronic and optical properties of each material. We compare 17 materials from four material classes (noble metals, refractory metals, transition metal nitrides, and conductive oxides) considering eight topical LSPR applications. Our figures of merit go beyond purely electromagnetic effects and account for the materials' thermal properties, interactions with adjacent materials, and realistic illumination conditions. For each application we compare, for simplicity, an optimized spherical antenna geometry and benchmark our proposed choice against the state-of-the-art from the literature. Our propositions suggest the most suitable plasmonic materials for key technology applications and can act as a starting point for those working directly on the design, fabrication, and testing of such devices.
引用
收藏
页码:240 / 259
页数:39
相关论文
共 173 条
[1]   High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors [J].
Alavirad, Mohammad ;
Olivieri, Anthony ;
Roy, Langis ;
Berini, Pierre .
OPTICS EXPRESS, 2016, 24 (20) :22544-22554
[2]   Few-Femtosecond Plasmon Dephasing of a Single Metallic Nanostructure from Optical Response Function Reconstruction by Interferometric Frequency Resolved Optical Gating [J].
Anderson, Alexandria ;
Deryckx, Kseniya S. ;
Xu, Xiaoji G. ;
Steinmeyer, Gunter ;
Raschke, Markus B. .
NANO LETTERS, 2010, 10 (07) :2519-2524
[3]  
Ashcroft N.W., 1976, SOLID STATE PHYS
[4]   PHOTOELECTRIC THRESHOLD, WORK FUNCTION, AND SURFACE BARRIER POTENTIAL OF SINGLE-CRYSTAL CUPROUS-OXIDE [J].
ASSIMOS, JA ;
TRIVICH, D .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1974, 26 (02) :477-488
[5]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[6]   Photoinduced Heating of Nanoparticle Arrays [J].
Baffou, Guillaume ;
Berto, Pascal ;
Urena, Esteban Bermudez ;
Quidant, Romain ;
Monneret, Serge ;
Polleux, Julien ;
Rigneault, Herve .
ACS NANO, 2013, 7 (08) :6478-6488
[7]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[8]   Femtosecond-pulsed optical heating of gold nanoparticles [J].
Baffou, Guillaume ;
Rigneault, Herve .
PHYSICAL REVIEW B, 2011, 84 (03)
[9]   Thermoplasmonics modeling: A Green's function approach [J].
Baffou, Guillaume ;
Quidant, Romain ;
Girard, Christian .
PHYSICAL REVIEW B, 2010, 82 (16)
[10]   Niobium as Alternative Material for Refractory and Active Plasmonics [J].
Bagheri, Shahin ;
Strohfeldt, Nikolai ;
Ubl, Monika ;
Berrier, Audrey ;
Merker, Michael ;
Richter, Gunther ;
Siegel, Michael ;
Giessen, Harald .
ACS PHOTONICS, 2018, 5 (08) :3298-3304