An extension of the Hoeffding inequality to unbounded random variables

被引:13
作者
Bentkus, V. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
Hoeffding's inequalities; probabilities of large deviations; bounds for tail probabilities; bounded and unbounded random variables; supermartingales;
D O I
10.1007/s10986-008-9007-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = X-1 + ... + X-n be a sum of independent random variables such that 0 <= X-k <= 1 for all k. Write p = ES/n and q = 1 - p. Let 0 < t < q. In this paper, we extend the Hoeffding inequality [16, Theorem 1] P{S >= nt + np} <= H-n(t, p), H(t, p) = (p/p+t)(p+t) (q/q-t)(q-t), to the case where X-k are unbounded positive random variables. Our inequalities reduce to the Hoeffding inequality if 0 <= X-k <= 1. Our conditions are X-k >= 0 and E S < infinity. We also provide improvements comparable with the inequalities of Bentkus [5]. The independence of Xk can be replaced by supermartingale-type assumptions. Our methods can be extended to prove counterparts of other inequalities of Hoeffding [16] and Bentkus [5].
引用
收藏
页码:137 / 157
页数:21
相关论文
共 24 条
[1]   Confidence bounds for the mean in nonparametric multisample problems [J].
Bentkus, V. ;
Kalosha, N. ;
van Zuijlen, M. C. A. .
STATISTICA NEERLANDICA, 2007, 61 (02) :209-231
[2]   Optimal Hoeffding-like inequalities under a symmetry assumption [J].
Bentkus, V. ;
Geuze, G. D. C. ;
Van Zuijlen, M. C. A. .
STATISTICS, 2006, 40 (02) :159-164
[3]   On Hoeffding's inequalities [J].
Bentkus, V .
ANNALS OF PROBABILITY, 2004, 32 (02) :1650-1673
[4]   An inequality for tail probabilities of martingales with differences bounded from one side [J].
Bentkus, V .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (01) :161-173
[5]  
BENTKUS V, 2006, 0612 RADB U NIJM DEP, P1
[6]  
Bentkus V., 2002, LITHUANIAN MATH J, V42, P255
[7]  
BENTKUS V, 2006, 0608 RADB U NIJM DEP
[8]  
Bentkus V., 2001, LITH MATH J, V41, P112
[9]  
BENTKUS V, 2003, LITH MATH J, V43, P141
[10]  
Bentkus V, 2006, LITH MATH J, V46, P1