Non-equilibrium Thermodynamics and Conformal Field Theory

被引:9
作者
Hollands, Stefan [1 ]
Longo, Roberto [2 ]
机构
[1] Univ Leipzig, Inst Theoret Phys, Bruderstr 16, D-04103 Leipzig, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
QUANTUM-FIELDS; STATES; SUBFACTORS; DUALITY; INDEX; NETS;
D O I
10.1007/s00220-017-2938-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a model independent, operator algebraic approach to non-equilibrium quantum thermodynamics within the framework of two-dimensional Conformal Field Theory. Two infinite reservoirs in equilibrium at their own temperatures and chemical potentials are put in contact through a defect line, possibly by inserting a probe. As time evolves, the composite system then approaches a non-equilibrium steady state that we describe. In particular, we re-obtain recent formulas of Bernard and Doyon (Ann Henri Poincar, 16:113-161, 2015).
引用
收藏
页码:43 / 60
页数:18
相关论文
共 26 条
[1]   EXTENSION OF KMS STATES AND CHEMICAL POTENTIAL [J].
ARAKI, H ;
KASTLER, D ;
TAKESAKI, M ;
HAAG, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (02) :97-134
[2]  
Araki H., 1973, Publ. Res. Inst. Math. Sci., V9, P165
[3]   Conformal field theory out of equilibrium: a review [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[4]   Non-Equilibrium Steady States in Conformal Field Theory [J].
Bernard, Denis ;
Doyon, Benjamin .
ANNALES HENRI POINCARE, 2015, 16 (01) :113-161
[5]   Energy flow in non-equilibrium conformal field theory [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (36)
[6]   Phase Boundaries in Algebraic Conformal QFT [J].
Bischoff, Marcel ;
Kawahigashi, Yasuyuki ;
Longo, Roberto ;
Rehren, Karl-Henning .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (01) :1-45
[7]  
Bischoff M, 2015, DOC MATH, V20, P1137
[8]   DUALITY CONDITION FOR QUANTUM FIELDS [J].
BISOGNANO, JJ ;
WICHMANN, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (03) :303-321
[9]   TOWARDS A RELATIVISTIC KMS-CONDITION [J].
BROS, J ;
BUCHHOLZ, D .
NUCLEAR PHYSICS B, 1994, 429 (02) :291-318
[10]   MODULAR STRUCTURE AND DUALITY IN CONFORMAL QUANTUM-FIELD THEORY [J].
BRUNETTI, R ;
GUIDO, D ;
LONGO, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (01) :201-219