Dispersion-tunable photonic topological waveguides

被引:9
|
作者
Zhang, Zijian [1 ,2 ,3 ]
Li, Yuanzhen [1 ,2 ,3 ]
Wang, Chi [1 ,2 ,3 ]
Xu, Su [4 ]
Wang, Zuojia [1 ,2 ,3 ]
Li, Erping [1 ,2 ]
Chen, Hongsheng [1 ,2 ,3 ]
Gao, Fei [1 ,2 ,3 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Interdisciplinary Ctr Quantum Informat, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Electromagnet Acad, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Int Joint Innovat Ctr, Haining 314400, Peoples R China
[4] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, 2699 Qianjin St, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
SURFACE-PLASMONS;
D O I
10.1063/5.0097422
中图分类号
O59 [应用物理学];
学科分类号
摘要
Dispersion-tunable photonic topological waveguides have recently attracted much attention, due to their promising applications on topological devices with tunable operational frequencies. Since dispersions of topological waveguides traverse the whole bandgaps of bulk structures, tuning the dispersions (especially the bandwidths) requires changing the whole bulk of corresponding photonic topological insulators. A previously reported material-modification approach provided a parallel tuning on such numerous lattices; however, the increased material loss deteriorated transmissions of the topological waveguide. Here, a parallel tuning approach on structures is theoretically proposed and demonstrated, which spawns dispersion-tunable photonic topological waveguides without increasing material loss. Based on the bilayer honeycomb model, a topological valley waveguide by utilizing bilayer designer plasmonic structures is constructed, accomplished with dispersion tunings by altering interlayer distance. Experimental results validate the theoretical model and display a 61%-relative-tuning range of frequency, with a tunable relative bandwidth up to 16%. This approach may promise applications in tunable topological lasers, robust delay lines, and intelligent photonic devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Topological coupling and decoupling of photonic crystal waveguides: Application to topological wavelength demultiplexing
    Ouyang, Mingyu
    Lei, Linlin
    He, Lingjuan
    Yu, Tianbao
    Liu, Wenxing
    Wang, Tongbiao
    Liao, Qinghua
    OPTICS AND LASER TECHNOLOGY, 2022, 156
  • [22] Efficient Design for Integrated Photonic Waveguides with Agile Dispersion
    Wang, Zhaonian
    Du, Jiangbing
    Shen, Weihong
    Liu, Jiacheng
    He, Zuyuan
    SENSORS, 2021, 21 (19)
  • [23] High-order dispersion in photonic crystal waveguides
    Assefa, Solomon
    Vlasov, Yurii A.
    OPTICS EXPRESS, 2007, 15 (26) : 17562 - 17569
  • [24] Photonic crystal waveguides: Dispersion, anomalous refraction and applications
    Zengerle, R
    ADVANCES IN SOLID STATE PHYSICS 44, 2004, 44 : 105 - 116
  • [25] Parametric gain in dispersion engineered photonic crystal waveguides
    Willinger, A.
    Roy, S.
    Santagiustina, M.
    Combrie, S.
    De Rossi, A.
    Cestier, I.
    Eisenstein, G.
    OPTICS EXPRESS, 2013, 21 (04): : 4995 - 5004
  • [26] Silicon photonic tunable optical dispersion compensator
    Jones, Richard
    Doylend, Jonathan
    Ebrahimi, Paniz
    Ayotte, Simon
    Raday, Omri
    Cohen, Oded
    OPTICS EXPRESS, 2007, 15 (24): : 15836 - 15841
  • [27] Gauge-Induced Floquet Topological States in Photonic Waveguides
    Song, Wange
    Chen, Yuxin
    Li, Hanmeng
    Gao, Shenglun
    Wu, Shengjie
    Chen, Chen
    Zhu, Shining
    Li, Tao
    LASER & PHOTONICS REVIEWS, 2021, 15 (08)
  • [28] Probing the Limits to Topological Protection in Photonic Crystal Waveguides and Cavities
    Barczyk, Rene
    Arora, Sonakshi
    Bauer, Thomas
    Parappurath, Nikhil
    Verhagen, Ewold
    Kuipers, Kobus
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [29] Analysis of Unidirectional Coupling in Topological Valley Photonic Crystal Waveguides
    Ruan, Wen-Sheng
    He, Xin-Tao
    Zhao, Fu-Li
    Dong, Jian-Wen
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (04) : 889 - 895
  • [30] Parity-time symmetric photonic topological coupled waveguides
    Kang-Hyok, O.
    Kim, Kwang-Hyon
    OPTICS AND LASER TECHNOLOGY, 2021, 144