Role of the electronic structure in the morphotropic phase boundary of TbxDy1-xCo2 studied by first-principle calculation

被引:8
作者
Zhang, Dongyan [1 ]
Ma, Xiaohua [1 ]
Yang, Sen [2 ]
Song, Xiaoping [2 ]
机构
[1] Xidian Univ, Sch Adv Mat & Nanotechnol, State Key Discipline Lab Wide Bandgap Semicond Te, Xian 710126, Peoples R China
[2] Xi An Jiao Tong Univ, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Peoples R China
基金
美国国家科学基金会;
关键词
TbxDy1-xCo2; Morphotropic phase boundary; First-principle calculation; MAGNETIC-PROPERTIES; DENSITY; RFE2; RCO2;
D O I
10.1016/j.jallcom.2016.08.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physically parallel to ferroelectric morphotropic phase boundary, a phase boundary separating two ferromagnetic phases of different crystallographic symmetries was experimentally found in TbxDy1-xCo2 via high-resolution synchrotron X-ray diffraction. However, lack of the theoretical support makes the morphotropic phase boundary in ferromagnetic system debatable. Here, a first-principle calculation was employed to investigate the electronic structure variation during the morphotropic phase transition in TbxDy1-xCo2. It offers a theoretical basis for the ferromagnetic phase of different crystallographic symmetries in TbxDy1-xCo2. It also provides an explanation for why morphotropic phase boundary occurs in TbxDy1-xCo2 alloys and offers a serviceable method to search for the morphotropic phase boundary phenomena in other alloys via computational rather than experimental method. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:1083 / 1087
页数:5
相关论文
共 39 条
  • [31] Structure and properties of LiNbO3 doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ceramics with the morphotropic phase boundary composition
    Qiang Zhang
    Zhenrong Li
    Mingxue Jiang
    Linhang Wang
    [J]. Journal of Materials Science: Materials in Electronics, 2013, 24 : 295 - 298
  • [32] Structure and Electrical Properties of Morphotropic Phase Boundary (Na1/2Bi1/2)TiO3-PbTiO3-Bi(Mg1/2Ti1/2)O3 Ternary System
    Sun, Renbing
    Wang, Fang
    Feng, Tangfu
    Kong, Fengyu
    Luo, Haosu
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (24):
  • [33] Structure and properties of Bi(Zn1/2Ti1/2)O3-modified Pb(Zr,Ti)O3 piezo-/ferroelectric ceramics around the ternary morphotropic phase boundary
    Xie, Yujuan
    Wang, Bi-Xia
    Claire, Neha
    Ye, Zuo-Guang
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (02) : 1450 - 1458
  • [34] Structure and dielectric properties of Pb(Zn0.2Ni0.8)1/3Nb2/3O3-PbTiO3 ferroelectric ceramic near the morphotropic phase boundary
    Pan, JS
    Zhang, XW
    Chen, KP
    [J]. MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 121 (03): : 261 - 265
  • [35] Study on structure and properties of Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics near morphotropic phase boundary
    Xi, Zengzhe
    Hou, Zexin
    Li, Xiaojuan
    Fang, Pinyang
    Long, Wei
    [J]. CERAMICS INTERNATIONAL, 2015, 41 : S787 - S791
  • [36] Stable structure and pair distribution function analysis of 0.4Li2MnO3-0.6Li (Mn1/3Ni1/3Co1/3)O2 as cathode materials lithium ion secondary batteries during charge-discharge process using first-principle calculation and quantum beam
    Ishibashi, Chiaki
    Kosasa, Ryohei
    Koitabashi, Yuiko
    Kitamura, Naoto
    Idemoto, Yasushi
    [J]. SOLID STATE IONICS, 2025, 421
  • [37] SAED and TEM investigations of domain structure in bismuth- and zinc-modified Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics at morphotropic phase boundary
    Zhu, XH
    Zhu, JM
    Zhou, SH
    Li, Q
    Meng, ZY
    Ming, NB
    [J]. FERROELECTRICS, 1998, 215 (1-4) : 265 - 276
  • [38] Structure and dielectric behavior of Pb(Mg1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 ferroelectric ceramics near the morphotropic phase boundary
    Pan, JS
    Zhang, XW
    [J]. ACTA MATERIALIA, 2006, 54 (05) : 1343 - 1348
  • [39] Study on thermodynamic, electronic and magnetic properties of RE2Cu2Cd(RE=Dy-Tm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {RE}_{2}\hbox {Cu}_{2}\hbox {Cd }(\hbox {RE}=\hbox {Dy}{-}\hbox {Tm})$$\end{document} intermetallics: first-principle calculation
    Naveen Kumar
    Sachin Kumar
    Kamna Yadav
    Arvind Kumar
    Pawan K Singh
    Neelabh Srivastava
    Rishi P Singh
    [J]. Bulletin of Materials Science, 2020, 43 (1)