On lower dimensional invariant tori in reversible systems

被引:49
作者
Liu, B [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
D O I
10.1006/jdeq.2000.3960
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a result on the persistence of lower dimensional invariant tori in reversible systems is obtained under some weak non-degenerate conditions. Such a result can be applied to the case where normal frequencies are not simple and some of them may be zero. We also give an answer of a conjecture of M. B. Sevryuk (1986, "Reversible Systems," Lecture Notes in Math.. Vol. 1211, Springer-Verlag, New York/Berlin) about the existence of lower-dimensional invariant tori in resonant zones. (C) 2001 Academic Press.
引用
收藏
页码:158 / 194
页数:37
相关论文
共 16 条
[1]   Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems [J].
Cheng, CQ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) :529-559
[2]   KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems [J].
Cong, F ;
Küpper, T ;
Li, Y ;
You, J .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (01) :49-68
[3]  
ELIASSON LH, 1988, ANN SCUOLA NORM SUP, V15, P119
[4]   CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS [J].
GRAFF, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) :1-69
[5]  
KUKSIN SB, 1993, LECT NOTES MATH, V1556
[6]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[7]   ON ELLIPTIC LOWER DIMENSIONAL TORI IN HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) :559-608
[8]   KAM theory near multiplicity one resonant surfaces in perturbations of a-priori stable Hamiltonian systems [J].
Rudnev, M ;
Wiggins, S .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (02) :177-209
[9]  
SERVYUK MB, 1990, J SOVJET MATH, V51, P2374
[10]  
SERVYUK MD, 1995, CHOAS, V5, P552