Regulatory Roles of MAPK Phosphatases in Cancer

被引:131
作者
Low, Heng Boon [1 ,2 ]
Zhang, Yongliang [1 ,2 ]
机构
[1] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Microbiol & Immunol, Singapore 117597, Singapore
[2] Natl Univ Singapore, Life Sci Inst, Immunol Programme, Singapore 117597, Singapore
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
MAPK; MKPs; Cancer; Chemoresistance; PROTEIN-KINASE PHOSPHATASE-1; DUAL-SPECIFICITY PHOSPHATASE; CANDIDATE TUMOR-SUPPRESSOR; STRESS-ACTIVATED KINASES; SQUAMOUS-CELL CARCINOMA; HUMAN BREAST-CANCER; CHROMOSOME ARM 8P; C-JUN; PANCREATIC-CANCER; DOWN-REGULATION;
D O I
10.4110/in.2016.16.2.85
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.
引用
收藏
页码:85 / 98
页数:14
相关论文
共 130 条
[1]   Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers [J].
Armes, JE ;
Hammet, F ;
de Silva, M ;
Ciciulla, J ;
Ramus, SJ ;
Soo, WK ;
Mahoney, A ;
Yarovaya, N ;
Henderson, MA ;
Gish, K ;
Hutchins, AM ;
Price, GR ;
Venter, DJ .
ONCOGENE, 2004, 23 (33) :5697-5702
[2]   Synthesis and biological activity of a focused library of mitogen-activated protein kinase phosphatase inhibitors [J].
Arnold, David M. ;
Foster, Caleb ;
Huryn, Donna M. ;
Lazo, John S. ;
Johnston, Paul A. ;
Wipf, Peter .
CHEMICAL BIOLOGY & DRUG DESIGN, 2007, 69 (01) :23-30
[3]   Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance [J].
Balko, Justin M. ;
Cook, Rebecca S. ;
Vaught, David B. ;
Kuba, Maria G. ;
Miller, Todd W. ;
Bhola, Neil E. ;
Sanders, Melinda E. ;
Granja-Ingram, Nara M. ;
Smith, J. Joshua ;
Meszoely, Ingrid M. ;
Salter, Janine ;
Dowsett, Mitch ;
Stemke-Hale, Katherine ;
Gonzalez-Angulo, Ana M. ;
Mills, Gordon B. ;
Pinto, Joseph A. ;
Gomez, Henry L. ;
Arteaga, Carlos L. .
NATURE MEDICINE, 2012, 18 (07) :1052-+
[4]  
Bancroft CC, 2001, CLIN CANCER RES, V7, P435
[5]   Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma [J].
Bang, YJ ;
Kwon, JH ;
Kang, SH ;
Kim, JW ;
Yang, YC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 250 (01) :43-47
[6]   ΔNp63α regulates Erk signaling via MKP3 to inhibit cancer metastasis [J].
Bergholz, J. ;
Zhang, Y. ;
Wu, J. ;
Meng, L. ;
Walsh, E. M. ;
Rai, A. ;
Sherman, M. Y. ;
Xiao, Z-X Jim .
ONCOGENE, 2014, 33 (02) :212-224
[7]   Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines [J].
Bloethner, S ;
Chen, BW ;
Hemminki, K ;
Müller-Berghaus, J ;
Ugurel, S ;
Schadendorf, D ;
Kumar, R .
CARCINOGENESIS, 2005, 26 (07) :1224-1232
[8]   Mitogen-activated protein (MAP) Kinase/MAP kinase phosphatase regulation: Roles in cell growth, death, and cancer [J].
Boutros, Tarek ;
Chevet, Eric ;
Metrakos, Peter .
PHARMACOLOGICAL REVIEWS, 2008, 60 (03) :261-310
[9]   Mechanism of p38 MAP kinase activation in vivo [J].
Brancho, D ;
Tanaka, N ;
Jaeschke, A ;
Ventura, JJ ;
Kelkar, N ;
Tanaka, Y ;
Kyuuma, M ;
Takeshita, T ;
Flavell, RA ;
Davis, RJ .
GENES & DEVELOPMENT, 2003, 17 (16) :1969-1978
[10]   Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16Ink4a-p19Arf pathway [J].
Bulavin, DV ;
Phillips, C ;
Nannenga, B ;
Timofeev, O ;
Donehower, LA ;
Anderson, CW ;
Appella, E ;
Fornace, AJ .
NATURE GENETICS, 2004, 36 (04) :343-350