Bio-Inspired Algorithms for Optimal Feature Selection in Motor Imagery-Based Brain-Computer Interface

被引:0
|
作者
Idowu, Oluwagbenga Paul [1 ,2 ,3 ]
Fang, Peng [1 ,2 ,3 ]
Li, Guanglin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Key Lab Human Machine Intelligence Synergy Syst, Shenzhen 518055, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
[3] Shenzhen Engn Lab Neural Rehabil Technol, Shenzhen 518055, Peoples R China
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recently, there is an increasing recognition that sensory feedback is critical for proper motor control. With the help of BCI, people with motor disabilities can communicate with their environments or control things around them by using signals extracted directly from the brain. The widely used non-invasive EEG based BCI system require that the brain signals are first preprocessed, and then translated into significant features that could be converted into commands for external control. To determine the appropriate information from the acquired brain signals is a major challenge for a reliable classification accuracy due to high data dimensions. The feature selection approach is a feasible technique to solving this problem, however, an effective selection method for determining the best set of features that would yield a significant classification performance has not yet been established for motor imagery (MI) based BCI. This paper explored the effectiveness of bio-inspired algorithms (BIA) such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), Cuckoo Search Algorithm (CSA), and Modified Particle Swarm Optimization (M-PSO) on EEG and ECoG data. The performance of SVM classifier showed that M-PSO is highly efficacious with the least selected feature (SF), and converges at an acceptable speed in low iterations.
引用
收藏
页码:519 / 522
页数:4
相关论文
共 50 条
  • [1] A Novel Feature Selection Method For Motor Imagery-Based Brain-Computer Interfaces
    Momeny, Saeed
    Faradji, Farhad
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1421 - 1424
  • [2] Feature Selection using a Genetic Algorithm in a Motor Imagery-based Brain Computer Interface
    Corralejo, Rebeca
    Hornero, Roberto
    Alvarez, Daniel
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7703 - 7706
  • [3] Channel Selection for Optimal EEG Measurement in Motor Imagery-Based Brain-Computer Interfaces
    Arpaia, Pasquale
    Donnarumma, Francesco
    Esposito, Antonio
    Parvis, Marco
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (03)
  • [4] Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface
    Tan, Ping
    Wang, Xin
    Wang, Yong
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 52
  • [5] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    Lazurenko, D. M.
    Kiroy, V. N.
    Shepelev, I. E.
    Podladchikova, L. N.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2019, 28 (02) : 109 - 117
  • [6] A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface
    Dheeraj Rathee
    Haider Raza
    Sujit Roy
    Girijesh Prasad
    Scientific Data, 8
  • [7] Unsupervised Processing Methods for Motor Imagery-Based Brain-Computer Interface
    Eldeib, Ayman M.
    Sarhan, Ola
    Wahed, Manal Abdel
    2018 IEEE 4TH MIDDLE EAST CONFERENCE ON BIOMEDICAL ENGINEERING (MECBME), 2018, : 106 - 111
  • [8] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    D. M. Lazurenko
    V. N. Kiroy
    I. E. Shepelev
    L. N. Podladchikova
    Optical Memory and Neural Networks, 2019, 28 : 109 - 117
  • [9] A magnetoencephalography dataset for motor and cognitive imagery-based brain-computer interface
    Rathee, Dheeraj
    Raza, Haider
    Roy, Sujit
    Prasad, Girijesh
    SCIENTIFIC DATA, 2021, 8 (01)
  • [10] Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface
    Mashat, M. Ebrahim M.
    Lin, Chin-Teng
    Zhang, Dingguo
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (10) : 2178 - 2185