Well-posedness and regularity of weakly coupled wave-plate equation with boundary control and observation

被引:17
作者
Chai, Shugen [1 ,3 ]
Guo, Bao-Zhu [2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Wave-plate equation; well-posed and regular system; infinite-dimensional system; DIRICHLET CONTROL; STABILIZATION; CONTROLLABILITY;
D O I
10.1007/s10883-009-9072-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the open-loop system of a weakly coupled linear wave-plate equation with Dirichlet boundary control and collocated observation. It is shown that the system is well-posed in the sense of D. Salamon and regular in the sense of G. Weiss. With the multiplier method, the feedthrough operator is explicitly represented.
引用
收藏
页码:331 / 358
页数:28
相关论文
共 44 条
[21]   WELL-POSEDNESS AND DYNAMICS OF WAVE EQUATIONS WITH NONLINEAR DAMPING AND MOVING BOUNDARY [J].
Chang, Qingquan ;
Li, Dandan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (02) :629-641
[22]   WELL-POSEDNESS AND EXPONENTIAL STABILITY OF THE WAVE EQUATION WITH DELAY AND THERMODIFFUSION EFFECTS [J].
Douib, Madani ;
Aidi, Mohamed .
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2024, 93 :67-78
[23]   STOCHASTIC WELL-POSED SYSTEMS AND WELL-POSEDNESS OF SOME STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH BOUNDARY CONTROL AND OBSERVATION [J].
Lu, Qi .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) :3457-3482
[24]   Well-posedness of Mindlin-Timoshenko Plate with Nonlinear Boundary Damping and Sources [J].
Pei, Pei ;
Rammaha, Mohammad A. ;
Toundykov, Daniel .
APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 76 (02) :429-464
[26]   BOUNDARY CONTROL OF GENERALIZED KORTEWEG-DE VRIES-BURGERS-HUXLEY EQUATION: WELL-POSEDNESS, STABILIZATION AND NUMERICAL STUDIES [J].
Singh, Shri Lal Raghudev Ram ;
Mohan, Manil T. .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2025, 15 (03) :1205-1240
[27]   Well-posedness and stability for Kirchhoff equation with non-porous acoustic boundary conditions [J].
Vicente, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 313 :314-335
[28]   A nonautonomous delayed viscoelastic wave equation with a linear damping: well-posedness and exponential stability [J].
Djemoui, Marwa ;
Chellaoua, Houria ;
Boukhatem, Yamna .
JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (02) :319-336
[29]   Well-posedness and exponential stability for a plate equation with time-varying delay and past history [J].
Feng, Baowei .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01)
[30]   The regularity of the wave equation with partial Dirichlet control and colocated observation [J].
Guo, BZ ;
Zhang, X .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) :1598-1613