Feller processes on nonlocally compact spaces

被引:32
作者
Szarek, Tomasz [1 ]
机构
[1] Silesian Univ, PL-40007 Katowice, Poland
关键词
e-chain; invariant measure; stability;
D O I
10.1214/009117906000000313
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Feller processes on a complete separable metric space X satisfying the ergodic condition of the form limsup n ->infinity (1/n Sigma P-n(i=1)i(x, 0)) > 0 for some x epsilon X, where O is an arbitrary open neighborhood of some point z epsilon X and P is a transition function. It is shown that e-chains which satisfy the above condition admit an invariant probability measure. Some results on the stability of such processes are also presented.
引用
收藏
页码:1849 / 1863
页数:15
相关论文
共 30 条
[1]  
BARNSLEY MF, 1988, ANN I H POINCARE-PR, V24, P367
[2]  
Billingsley P., 1999, CONVERGENCE PROBABIL
[3]  
BOROVKOV V, 1991, SIBERIAN MATH J, V32, P6
[4]   Necessary and sufficient conditions for non-singular invariant probability measures for Feller Markov chains [J].
Costa, OLV ;
Dufour, F .
STATISTICS & PROBABILITY LETTERS, 2001, 53 (01) :47-57
[5]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[6]   Iterated random functions [J].
Diaconis, P ;
Freedman, D .
SIAM REVIEW, 1999, 41 (01) :45-76
[7]  
ETHIER S. N., 1985, Markov Processes: Characterization and Convergence
[8]  
FOGUEL SR, 1966, P AM MATH SOC, V17, P387
[9]  
FOGUEL SR, 1962, P AM MATH SOC, V13, P833
[10]  
FOGUEL SR, 1969, ERGODIC THEORY MARKO, V21