Ductile compaction of partially molten rocks: the effect of non-linear viscous rheology on instability and segregation
被引:21
作者:
Veveakis, E.
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Earth Sci & Resource Engn, Kensington, WA 6151, Australia
Univ New S Wales, Sch Petr Engn, Sydney, NSW, AustraliaCSIRO Earth Sci & Resource Engn, Kensington, WA 6151, Australia
Veveakis, E.
[1
,2
]
Regenauer-Lieb, K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Sch Petr Engn, Sydney, NSW, Australia
Univ Western Australia, Sch Earth & Environm, Crawley, WA, AustraliaCSIRO Earth Sci & Resource Engn, Kensington, WA 6151, Australia
Regenauer-Lieb, K.
[2
,3
]
Weinberg, R. F.
论文数: 0引用数: 0
h-index: 0
机构:
Monash Univ, Sch Geosci, Clayton, Vic, AustraliaCSIRO Earth Sci & Resource Engn, Kensington, WA 6151, Australia
Weinberg, R. F.
[4
]
机构:
[1] CSIRO Earth Sci & Resource Engn, Kensington, WA 6151, Australia
[2] Univ New S Wales, Sch Petr Engn, Sydney, NSW, Australia
[3] Univ Western Australia, Sch Earth & Environm, Crawley, WA, Australia
[4] Monash Univ, Sch Geosci, Clayton, Vic, Australia
Geomechanics;
Creep and deformation;
Mechanics;
theory;
and modelling;
MELT SEGREGATION;
MAGMA;
EXTRACTION;
MANTLE;
WAVES;
FLOW;
D O I:
10.1093/gji/ggu412
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
The segregation of melt from a linear viscous matrix is traditionally described by McKenzie's compaction theory. This classical solution overlooks instabilities that arise when non-linear solid matrix behaviour is considered. Here we report a closed form 1-D solution obtained by extending McKenzie's theory to non-linear matrix behaviours. The new solution provides periodic stress singularities, acting as high porosity melt channels, to be the fundamental response of the compacted matrix. The characteristic length controlling the periodicity is still McKenzie's compaction length (delta) over bar (c), adjusted for non-linear rheologies.