Algebraic approach to fasciagraphs and rotagraphs

被引:39
作者
Klavzar, S [1 ]
Zerovnik, J [1 ]
机构
[1] UNIV MARIBOR,FAC TECH SCI,MARIBOR 62000,SLOVENIA
关键词
D O I
10.1016/0166-218X(95)00058-Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic approach is proposed which can be used to solve different problems on fasciagraphs and rotagraphs. A particular instance of this method computes the domination number of fasciagraphs and rotagraphs in O(log n) time, where n is the number of monographs of such a graph. Fasciagraphs and rotagraphs include complete grid graphs P-k square P-n and graphs C-k square C-n. The best previously known algorithms for computing the domination number of P-k square P-n are of lime complexity O(n) (for a fixed k).
引用
收藏
页码:93 / 100
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 1986, C NUMER
[2]  
[Anonymous], 1979, GRAPHS NETWORKS
[3]  
ARNBORG S, 1985, BIT, V25, P2, DOI 10.1007/BF01934985
[4]  
ARNBORG S, 1984, TRITANA8404 DEP NUM
[5]   THE MATCHING POLYNOMIAL OF A POLYGRAPH [J].
BABIC, D ;
GRAOVAC, A ;
MOHAR, B ;
PISANSKI, T .
DISCRETE APPLIED MATHEMATICS, 1986, 15 (01) :11-24
[6]  
CHANG TY, 1994, ARS COMBINATORIA, V38, P97
[7]   THE DOMINATION NUMBERS OF THE 5XN AND 6XN GRID GRAPHS [J].
CHANG, TY ;
CLARK, WE .
JOURNAL OF GRAPH THEORY, 1993, 17 (01) :81-107
[8]   UNIT DISK GRAPHS [J].
CLARK, BN ;
COLBOURN, CJ ;
JOHNSON, DS .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :165-177
[9]  
COCKAYNE EJ, 1985, C NUMER, V47, P217
[10]  
FISHER DC, UNPUB J GRAPH THEORY