GLOBAL WELL-POSEDNESS TO INCOMPRESSIBLE NON-INERTIAL QIAN-SHENG MODEL

被引:6
作者
Ma, Yangjun [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Incompressible non-inertial Qian-Sheng model; Q-tensor; local and global well-posedness; a priori estimates; Parodi's relation; LIQUID; EXISTENCE; EQUATIONS;
D O I
10.3934/dcds.2020187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the incompressible non-inertial Qian-Sheng model, which describes the hydrodynamics of nematic liquid crystals without inertial effect in the Q-tensor framework. Under some proper assumptions on the viscous coefficients, we prove the local well-posedness with large initial data and the global existence with small size of the initial data in the classical solutions regime.
引用
收藏
页码:4479 / 4496
页数:18
相关论文
共 16 条
[11]   GLOBAL EXISTENCE AND REGULARITY FOR THE FULL COUPLED NAVIER-STOKES AND Q-TENSOR SYSTEM [J].
Paicu, Marius ;
Zarnescu, Arghir .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (05) :2009-2049
[12]   Waves at the nematic-isotropic interface: The role of surface tension anisotropy, curvature elasticity, and backflow effects [J].
Popa-Nita, V ;
Oswald, P .
PHYSICAL REVIEW E, 2003, 68 (06)
[13]   Waves at the nematic-isotropic interface: Thermotropic nematogen-non-nematogen mixtures [J].
Popa-Nita, V ;
Sluckin, TJ ;
Kralj, S .
PHYSICAL REVIEW E, 2005, 71 (06)
[14]   Generalized hydrodynamic equations for nematic liquid crystals [J].
Qian, TZ ;
Sheng, P .
PHYSICAL REVIEW E, 1998, 58 (06) :7475-7485
[15]   Global strong solution to the three-dimensional liquid crystal flows of Q-tensor model [J].
Xiao, Yao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1291-1316
[16]  
Zarnescu A., 2012, Topics in mathematical modeling and analysis, V7, P187