Visualizing Hidden Themes of Taxi Movement with Semantic Transformation

被引:68
作者
Chu, Ding [1 ]
Sheets, David A. [1 ]
Zhao, Ye [1 ]
Wu, Yingyu [1 ]
Yang, Jing [2 ]
Zheng, Maogong [3 ]
Chen, George [3 ]
机构
[1] Kent State Univ, Kent, OH 44240 USA
[2] UNC Charlotte, Charlotte, NC USA
[3] Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
来源
2014 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS) | 2014年
关键词
Taxi Trajectories; Semantic Transformation; Clustering; Topic Modeling; Latent Dirichlet Analysis; GEOVISUALIZATION; EXPLORATION; ANALYTICS;
D O I
10.1109/PacificVis.2014.50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new methodology is developed to discover and analyze the hidden knowledge of massive taxi trajectory data within a city. This approach creatively transforms the geographic coordinates (i.e. latitude and longitude) to street names reflecting contextual semantic information. Consequently, the movement of each taxi is studied as a document consisting of the taxi traversed street names, which enables semantic analysis of massive taxi data sets as document corpora. Hidden themes, namely taxi topics, are identified through textual topic modeling techniques. The taxi topics reflect urban mobility patterns and trends, which are displayed and analyzed through a visual analytics system. The system integrates interactive visualization tools, including taxi topic maps, topic routes, street clouds and parallel coordinates, to visualize the probability- based topical information. Urban planners, administration, travelers, and drivers can conduct their various knowledge discovery tasks with direct semantic and visual assists. The effectiveness of this approach is illustrated by case studies using a large taxi trajectory data set acquired from 21,360 taxis in a city.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 35 条
[1]   Real-Time Visualization of Streaming Text with a Force-Based Dynamic System [J].
Alsakran, Jamal ;
Chen, Yang ;
Luo, Dongning ;
Zhao, Ye ;
Yang, Jing ;
Dou, Wenwen ;
Liu, Shixia .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2012, 32 (01) :34-45
[2]   Visual Analytics for Geographic Analysis, Exemplified by Different Types of Movement Data [J].
Andrienko, Gennady ;
Andrienko, Natalia .
INFORMATION FUSION AND GEOGRAPHIC INFORMATION SYSTEMS, PROCEEDINGS, 2009, :3-17
[3]   Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research INTRODUCTION [J].
Andrienko, Gennady ;
Andrienko, Natalia ;
Dykes, Jason ;
Fabrikant, Sara Irina ;
Wachowicz, Monica .
INFORMATION VISUALIZATION, 2008, 7 (3-4) :173-180
[4]  
[Anonymous], 2010, P 2010 ACM SIGMOD IN
[5]  
[Anonymous], PVLDB
[6]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[7]  
Crnovrsanin Tarik, 2009, Proceedings of the 2009 IEEE Symposium on Visual Analytics Science and Technology. VAST 2009. Held co-jointly with VisWeek 2009, P11, DOI 10.1109/VAST.2009.5332593
[8]   TextFlow: Towards Better Understanding of Evolving Topics in Text [J].
Cui, Weiwei ;
Liu, Shixia ;
Tan, Li ;
Shi, Conglei ;
Song, Yangqiu ;
Gao, Zekai J. ;
Tong, Xin ;
Qu, Huamin .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2412-2421
[9]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[10]   Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips [J].
Ferreira, Nivan ;
Poco, Jorge ;
Vo, Huy T. ;
Freire, Juliana ;
Silva, Claudio T. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) :2149-2158