Identities with a single skew derivation

被引:122
作者
Chuang, CL [1 ]
Lee, TK [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
关键词
automorphism; prime ring; skew derivation; GPI; K-polynomial;
D O I
10.1016/j.jalgebra.2003.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with extended centroid C and delta, a continuous skew derivation of R. We define the notion of K-polynomials which, in the case that 5 is an ordinary derivation, reduces to polynomials of the form x(delta pn) + alpha(1)x(delta pn-1) + center dot center dot center dot + alpha(n)X(delta) wherecei alpha(i) is an element of C. It is shown that all generalized identities with 6 are consequences of GPIs of R and an identity in the form psi (x) = x(sigma m) b - bx, where Psi(x) is a K-polynomial of minimal possible order m. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:59 / 77
页数:19
相关论文
共 17 条
[1]  
Andreeva T. A., 1996, ALGEBR LOG+, V35, P366
[2]  
ANDREEVA TA, 1996, ALGEBRA LOGIC, V35, P655
[3]  
BEIDAR KI, 1996, TXB PURE APPL MATH, V196
[4]  
Chuang C.-L., 1993, J ALGEBRA, V160, P292
[5]   DIFFERENTIAL IDENTITIES WITH AUTOMORPHISMS AND ANTIAUTOMORPHISMS .1. [J].
CHUANG, CL .
JOURNAL OF ALGEBRA, 1992, 149 (02) :371-404
[6]   Identities with skew derivations [J].
Chuang, CL .
JOURNAL OF ALGEBRA, 2000, 224 (02) :292-335
[7]  
Harcenko V. K., 1975, Algebra and Logic, V14, P132
[8]  
Kharchenko, 1991, AUTOMORPHISMS DERIVA
[9]   SKEW DERIVATIONS OF PRIME-RINGS [J].
KHARCHENKO, VK ;
POPOV, AZ .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (11) :3321-3345
[10]  
KHARCHENKO VK, 1979, ALGEBRA LOGIC, V18, P86