THE FOURIER TRANSFORM OF ANISOTROPIC HARDY SPACES WITH VARIABLE EXPONENTS AND THEIR APPLICATIONS

被引:2
作者
Wang, Wenhua [1 ]
Wang, Aiting [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Qinghai Minzu Univ, Sch Math & Stat, Xining 810000, Qinghai, Peoples R China
来源
OPERATORS AND MATRICES | 2022年 / 16卷 / 02期
关键词
Anisotropy; Hardy space; atom; Fourier transform; ATOMIC DECOMPOSITIONS; LORENTZ SPACES; REGULARITY;
D O I
10.7153/oam-2022-16-39
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an expansive dilation on Rn , and p(??) : Rn ??? (0, ???) be a variable exponent function satisfying the globally log-H ??lder continuous condition. Let 3Ap(??) (Rn) be the variable anisotropic Hardy space introduced by Liu [15]. In this paper, the authors obtain that the Fourier A (Rn) coincides with a continuous function F on Rn in the sense of tempered distributions. As applications, the authors further conclude a higher order convergence of the continuous function F at the origin and then give a variant of the Hardy-Littlewood inequality in the setting of anisotropic Hardy spaces with variable exponents.
引用
收藏
页码:513 / 528
页数:16
相关论文
共 27 条