Solution NMR Structure of Apo-Calmodulin in Complex with the IQ Motif of Human Cardiac Sodium Channel NaV1.5

被引:98
作者
Chagot, Benjamin
Chazin, Walter J. [1 ]
机构
[1] Vanderbilt Univ, Dept Biochem, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
calmodulin; protein-protein interaction; calcium signaling; calcium sensor; Long QT syndrome; INACTIVATION GATE; CRYSTAL-STRUCTURE; BRUGADA-SYNDROME; CHEMICAL-SHIFT; CALCIUM SENSOR; EF-HAND; DOMAIN; BINDING; RECOGNITION; REVEALS;
D O I
10.1016/j.jmb.2010.11.046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The function of the human voltage-gated sodium channel Na(V)1.5 is regulated in part by intracellular calcium signals. The ubiquitous calcium sensor protein calmodulin (CaM) is an important part of the complex calcium-sensing apparatus in Na(V)1.5. CaM interacts with an IQ (isoleucine-glutamine) motif in the large intracellular C-terminal domain of the channel. Using co-expression and co-purification, we have been able to isolate a CaM IQ motif complex and to determine its high-resolution structure in absence of calcium using multi-dimensional solution NMR. Under these conditions, the Na(V)1.5 IQ motif interacts with the C-terminal domain (C-lobe) of CaM, with the N-terminal domain remaining free in solution. The structure reveals that the C-lobe adopts a semi-open conformation with the IQ motif bound in a narrow hydrophobic groove. Sequence similarities between voltage-gated sodium channels and voltage-gated calcium channels suggest that the structure of the CaM-Na(V)1.5 IQ motif complex can serve as a general model for the interaction between CaM and ion channel IQ motifs under low-calcium conditions. The structure also provides insight into the biochemical basis for disease-associated mutations that map to the IQ motif in Na(V)1.5. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 119
页数:14
相关论文
共 47 条
  • [31] Modeling the human Nav1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade
    Ahmed, Marawan
    Hasani, Horia Jalily
    Ganesan, Aravindhan
    Houghton, Michael
    Barakat, Khaled
    [J]. DRUG DESIGN DEVELOPMENT AND THERAPY, 2017, 11 : 2301 - 2324
  • [32] Mechanistic insights into the interaction of cardiac sodium channel Nav1.5 with MOG1 and a new molecular mechanism for Brugada syndrome
    Xiong, Hongbo
    Bai, Xuemei
    Quan, Zhuang
    Yu, Dong
    Zhang, Hongfu
    Zhang, Chi
    Liang, Lina
    Yao, Yufeng
    Yang, Qin
    Wang, Zhijie
    Wang, Longfei
    Huang, Yuan
    Li, Hui
    Ren, Xiang
    Tu, Xin
    Ke, Tie
    Xu, Chengqi
    Wang, Qing K.
    [J]. HEART RHYTHM, 2022, 19 (03) : 478 - 489
  • [33] The β1-Subunit of Nav1.5 Cardiac Sodium Channel Is Required for a Dominant Negative Effect through α-α Interaction
    Mercier, Aurelie
    Clement, Romain
    Harnois, Thomas
    Bourmeyster, Nicolas
    Faivre, Jean-Francois
    Findlay, Ian
    Chahine, Mohamed
    Bois, Patrick
    Chatelier, Aurelien
    [J]. PLOS ONE, 2012, 7 (11):
  • [34] 14-3-3s/YWHAE regulates the transcriptional expression of cardiac sodium channel NaV1.5
    Hu, Yushuang
    Zhang, Chi
    Wang, Shun
    Xiong, Hongbo
    Xie, Wen
    Zeng, Ziyue
    Cai, Huanhuan
    Wang, Qing Kenneth
    Lu, Zhibing
    [J]. HEART RHYTHM, 2024, 21 (11) : 2320 - 2329
  • [35] Mechanistic insights into the interaction of the MOG1 protein with the cardiac sodium channel Nav1.5 clarify the molecular basis of Brugada syndrome
    Yu, Gang
    Liu, Yinan
    Qin, Jun
    Wang, Zhijie
    Hu, Yushuang
    Wang, Fan
    Li, Yabo
    Chakrabarti, Susmita
    Chen, Qiuyun
    Wang, Qing Kenneth
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (47) : 18207 - 18217
  • [36] Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel Nav1.2
    Hovey, Liam
    Fowler, C. Andrew
    Mahling, Ryan
    Lin, Zesen
    Miller, Mark Stephen
    Marx, Dagan C.
    Yoder, Jesse B.
    Kim, Elaine H.
    Tefft, Kristin M.
    Waite, Brett C.
    Feldkamp, Michael D.
    Yu, Liping
    Shea, Madeline A.
    [J]. BIOPHYSICAL CHEMISTRY, 2017, 224 : 1 - 19
  • [37] The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations
    Carrithers, Lisette M.
    Hulseberg, Paul
    Sandor, Matyas
    Carrithers, Michael D.
    [J]. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2011, 63 (03): : 319 - 327
  • [38] Structure and Function of FS50, a salivary protein from the flea Xenopsylla cheopis that blocks the sodium channel NaV1.5
    Xu, Xueqing
    Zhang, Bei
    Yang, Shilong
    An, Su
    Ribeiro, Jose M. C.
    Andersen, John F.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [39] Ubiquitination-activating enzymes UBE1 and UBA6 regulate ubiquitination and expression of cardiac sodium channel Nav1.5
    Hu, Yushuang
    Bai, Xuemei
    Zhang, Chi
    Chakrabarti, Susmita
    Tang, Bo
    Xiong, Hongbo
    Wang, Zhijie
    Yu, Gang
    Xu, Chengqi
    Chen, Qiuyun
    Wang, Qing Kenneth
    [J]. BIOCHEMICAL JOURNAL, 2020, 477 (09) : 1683 - 1700
  • [40] The Beta1-subunit of Nav1.5 cardiac sodium channel is required for a dominant negative effect through alpha-alpha interaction
    Mercier, A.
    Clement, R.
    Harnois, T.
    Bourmeyster, N.
    Faivre, J. F.
    Findlay, I.
    Chahine, M.
    Bois, P.
    Chatelier, A.
    [J]. FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2013, 27 : 81 - 81